Study of b quark fragmentation using charged-particle decays of charmed daughter mesons

CMS Collaboration Brent R. Yates¹, Steve Wimpenny²

¹The Ohio State University, ²University of California, Riverside

brent.yates@cern.ch

Fragmentation

Fragmentation (or hadronization) is the process of partons converting into final state particles

A fraction of the momentum (p_T) of the fragmenting particle (X) is carried away by the new particle produced (Y)

$$z = Y p_{\rm T} / X p_{\rm T}$$

Fragmentation is not exactly calculable

The Lund symmetric function treats QCD interactions at large r as color strings (breaking of string \rightarrow fragmentation)

Modeling b quark fragmentation

Lund–Bowler fragmentation function accounts for bottom and charm quark finite mass $f(z) = \frac{1}{z^{1+r_{b}*b*m_{b}^{2}}} (1-z)^{a} e^{\left(\frac{-b m_{T}^{2}}{z}\right)}$

Shape is governed by the b quark shape parameter $r_{\rm b}$

Previous measurements

0.2

3

The analysis

Using charm mesons inside b-jets from $t\bar{t}$ events as a proxy for B meson fragmentation

 $x_{\rm b} = \frac{{\rm B}\,{\rm meson}\,p_{\rm T}}{{\rm b}\,{\rm jet}\,p_{\rm T}} \sim \frac{{\rm charm}\,{\rm meson}\,p_{\rm T}}{\sum p_{\rm T}^{\rm ch}}$

D⁰ → K[±]π[∓], D⁰ → K[±]π[∓] + μ[±], and J/Ψ → μ⁺μ⁻ using a Kalman Vertex Fit Orthogonal channels Charged particles only → avoid JES/JER uncertainties Performed in single lepton (e + jets, μ + jets) and dilepton (ee, eµ, and µµ) channels $\int \mathcal{L} = 36 \text{ fb}^{-1} \text{ at } \sqrt{s} = 13 \text{ TeV}$

jet

Invariant Mass Distributions

CMS 35.9 fb⁻¹ (13 TeV) 1.95 $M(K^{\pm}\pi^{\mp})$ (tagged) [GeV]

Perform background subtraction (data fit+ MC simulations) Calculate x_b for data and simulations as a function of r_b Fit for best value of r_b

Results

 $r_{\rm b} = 0.864 \pm 0.053 \,(\text{stat}) \pm 0.040 (\text{syst})$

 $r_{\rm b} = 0.836 \pm 0.070 \; (\text{stat}) \pm 0.056 \; (\text{syst})$

 $r_{\rm b} = 0.858 \pm 0.072 \,(\text{stat}) \pm 0.081 \,(\text{syst})$

Green bands are the total fit error

Combined fit $r_{\rm b} = 0.855 \pm 0.037 \, (\text{stat}) \pm 0.031 \, (\text{syst})$

Comparison with previous measurements

Conclusion

 J/Ψ , D^0 , and D^0_{μ} produced inside of b jets from tt decay were used to measure the shape of the b quark fragmentation function

 $r_b = 0.855 \pm 0.037 \text{ (stat)} \pm 0.031 \text{ (syst)}$

More precise than the results from the Z pole in e^+e^-

The fit results are consistent \rightarrow we observe no evidence for an environmental dependence of the b quark fragmentation

CMS-PAS-TOP-18-012

The Ohio State University

Backup

Using a Kalman filter to find the meson candidates

A Kalman Vertex Fit (KVF) is performed on all All good Kalman vertices must have: candidate tracks • $\chi^2 < 5$ to remove combinatorial

AK4 jets with $p_{\rm T}$ > 30 GeV and $|\eta|$ < 2.4

KVF applied to track pairs matching the criteria for the charmed mesons

- μ from J/Ψ : Global Muons, $p_{\rm T} > 3 \ {\rm GeV}$
- π from D⁰: $p_{\rm T} > 5 \,{\rm GeV}$
- K from D^0 : $p_T > 1 \text{ GeV}$

- $\chi^2 < 5$ to remove combinatorial background
- $c\tau/\sigma_{c\tau} > 10$ to remove prompt mesons

Event selection

 $\mu(e)$ +jets channels:

Lepton cuts

- $p_{\rm T} > 26(35)$ GeV passing tight ID
- $|\eta| < 2.4$
- Rellso< 0.15
- $\Delta R > 0.4$ to closet jet

Event cuts

- At least 1 jet with $p_{\rm T} > 30 {\rm ~GeV}$
- And at least 1 jet flagged by the Kalman filter Veto on additional isolated leptons:
- $p_{\rm T} > 15~{\rm GeV}$ passing loose ID
- $|\eta| < 2.4$
- Rellso< 0.24

 e^+e^- , $\mu^+\mu^-$, $e\mu$ channels: Lepton cuts

- $p_{\rm T} > 20~{\rm GeV}$
- $|\eta| < 2.4$
- Rellso< 0.15
- $\Delta R > 0.4$ to closet jet

Event cuts

- At least 1 jet flagged by the Kalman filter
 Mass cuts
- Same flavor final state
 - $|91\text{GeV} M_{ll}| > 15 \text{ GeV}; \text{MET} > 40 \text{ GeV}$
- $M_{ll} > 20 \text{ GeV}$

Corrections applied

Muon Trigger, ID, and isolation

- Scale factors
- Split by epochs BCDEF and GH

Electron Trigger and ID

Scale factors

Pile-up reweighting

Top $p_{\rm T}$ reweighting

Scale factors

Custom tracker scale factors

- Probability of dropping MC tracks
- Split by epochs BCDEF and GH

J/Ψ candidate selection

For the Kalman flagged jets containing a J/Ψ we require:

- $\mu p_{\rm T} > 3 \, {\rm GeV}$
- $\mu |\eta| < 2.4$
- $H_{\rm T} > 80~{\rm GeV}$
- Opposite signed PF muons
- Global muons only
- + 2.8 < $\left|M_{\mu^+\mu^-}\right|$ < 3.4 GeV J/ Ψ mass peak and side-bands
- + $\left|M_{\mu^+\mu^-} M_{PDG}\right| < 110 \text{ MeV} J/\Psi$ mass peak

D⁰ candidate selection

For the Kalman flagged jets containing a D⁰ we require:

- $\pi p_{\mathrm{T}} > 5 \text{ GeV}$ and K $p_{\mathrm{T}} > 1 \text{ GeV}$
- π and K $|\eta| < 1.5$
- $H_{\rm T} > 180~{\rm GeV}$
- Opposite signed PF candidates assigned as K^{\pm}/π^{\mp}
- + 1.7 < $|M_{\pi K}|$ < 2.0 GeV D^0 mass peak and side-band
- $|M_{\pi K} M_{PDG}| < 40 \text{ MeV} D^0$ mass peak

The D⁰ candidates can also be flavor tagged (denoted as D^0_{μ}) by requiring an additional soft muon from when the W from $B \rightarrow D^0$ decays muonically (final state $K + \pi + \mu + \nu_{\mu} + \text{soft tracks})$

- $|M_{\pi K} M_{PDG}| < 45 \text{ MeV} D^0$ mass peak
- The system $(D^0_{\mu} + \mu)$ gives the closet kinematics to the parent B meson

Flavor tagging

-

B±	\rightarrow	\overline{D}^0/D^0	\rightarrow	K±		$K^{\pm}\pi^{\mp} + \mu^{\pm}$
u/u	\rightarrow	u/u	\rightarrow	u/u		u/u
b/b	\rightarrow	c/c	\rightarrow	s/s		s/s
	\downarrow		W^{\mp}	\rightarrow	π^{\mp}	π^{\mp}
	W±	\rightarrow	$\mu^{\pm} + \nu_{\mu}$			$\mu^{\pm} + \nu_{\mu}$

Data to Data relative corrections

Scale factors were derived based on the B–F / GH ratios as a function of η and p_T using Data from the D⁰ side-bands (m < 1.824 and m > 1.904)

Results are used as a probability to drop MC tracks for epochs B–F for:

 $p_{\rm T}(\pi)$

 $\eta(\pi)$

 $p_{\mathrm{T}}(\mathrm{K})$

 $\eta(K)$

Tuning the fragmentation function

MC samples are made at GEN level using different values for r_b

Ratio of new GEN *z* over default GEN *z* is used as shape weight at RECO level to generate templates

r_b fit procedure

 χ^2 goodness-of-fit is performed w.r.t. the data for each template

 χ^2 scan is parameterized minimum \rightarrow best fit value

Statistical uncertainty is extracted from $\Delta \chi^2_{\rm min} \pm 1$

Systematic uncertainties

All other uncertainties are negligible:

Source	J/ψ	D^0	$\mathrm{D}^{0}{}_{\mu}$	Combined
Fit procedure	0.022	0.025	0.025	0.017
Simulated event statistics	0.030	0.042	0.030	0.019
Signal and background functions	0.007	0.021	0.002	0.006
Background subtractions		0.010	0.010	0.004
Shape uncertainties	0.013	0.013	0.071	0.016
Total	0.040	0.056	0.081	0.031

JSF and JER

Trigger

 m_{t}

Etc.