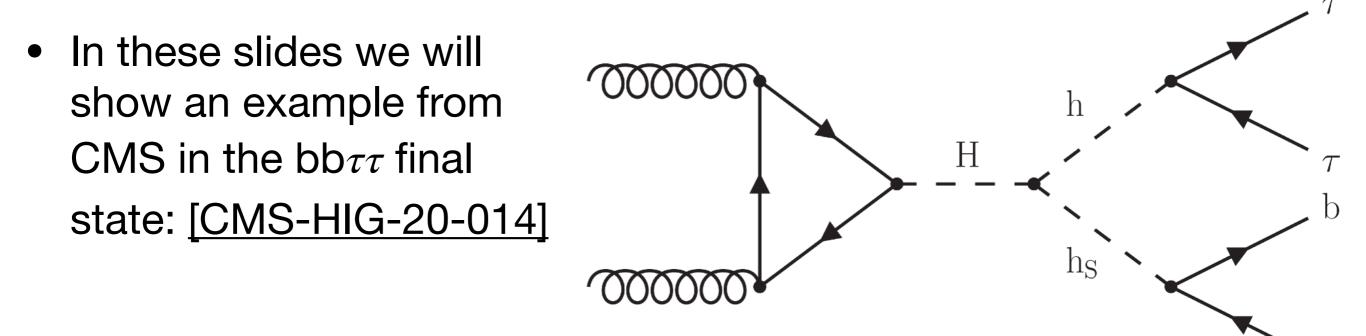
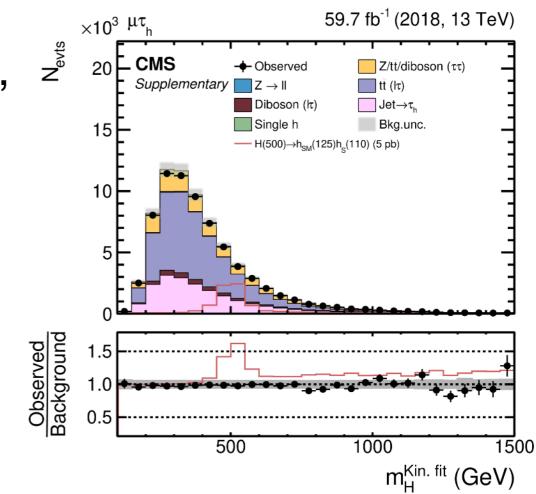

Imperial College London


Experimental results for NMSSM $H \rightarrow H_{S} h_{125} \rightarrow bb\tau\tau$ search

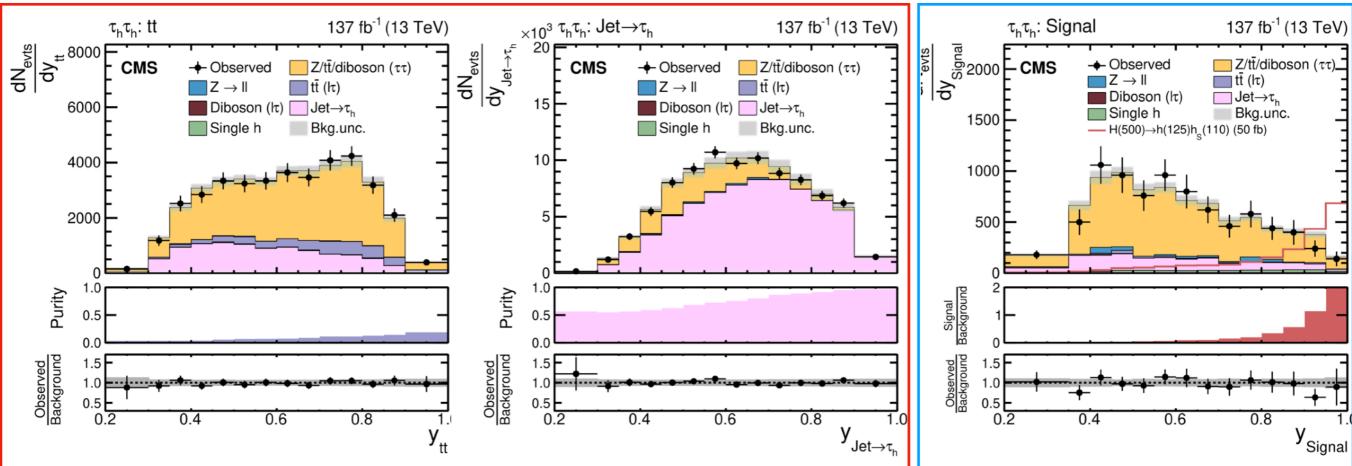
LHC Higgs WG workshop Daniel Winterbottom (on behalf of NMSSM subgroup conveners) <u>d.winterbottom15@imperial.ac.uk</u>


Introduction

- In NMSSM one (pseudo)scalar can have large singlet component which means direct production cross section is suppressed
- But production by decay of heavier H (A) can have sizeable cross section: H→ H_S h₁₂₅ (A→ A_S h₁₂₅)
- Several analyses ongoing to search for such decays with various final states

Analysis strategy

- The analysis uses leptonic (τ_e/τ_μ) and hadronic (τ_h) tau decays
- Events split into three channels: $\tau_e \tau_h$, $\tau_\mu \tau_h$, $\tau_h \tau_h$
- To separate signal from background a neural network (NN) is used
- Input variables include: masses, τ/jet p_Ts, N_{bjets}, b-jet ID scores
- Trained separately for different mass hypotheses (split by m_H and m_{Hs})
- Backgrounds modelled by data driven methods + simulations

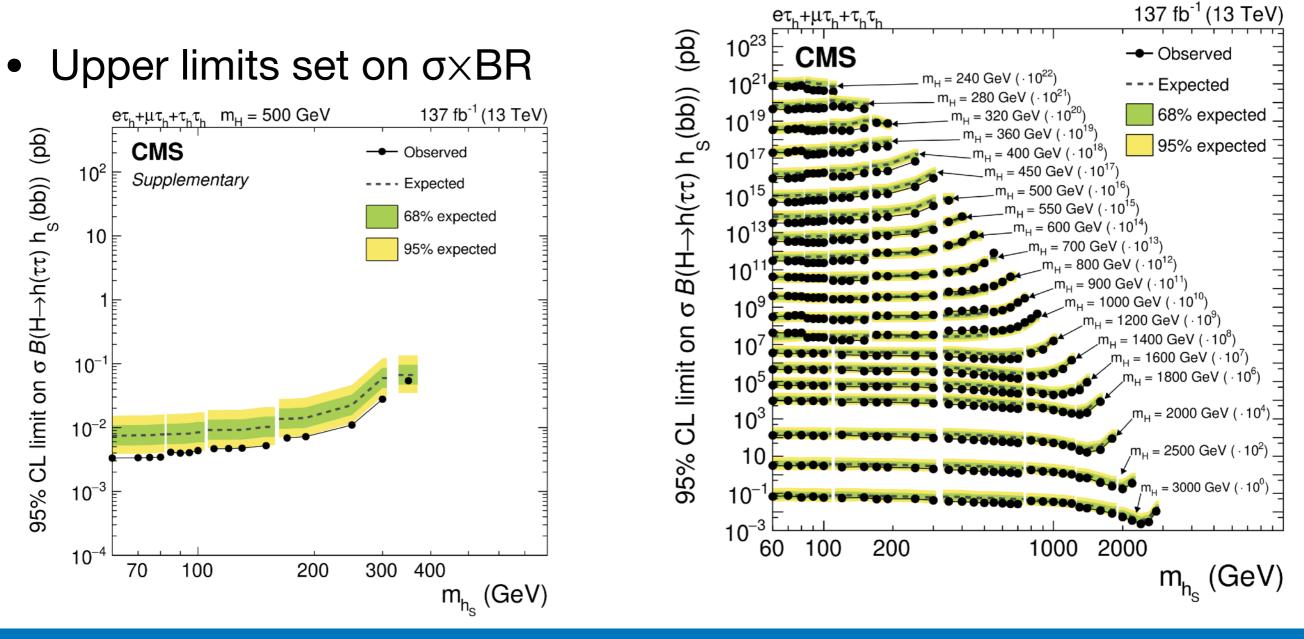


NN Distributions

- Multi-class NN used, 4x background classes + 1 signal class
- Output is 5 scores, yi, that sum to 1
- Allocate events to categories based on largest y_i

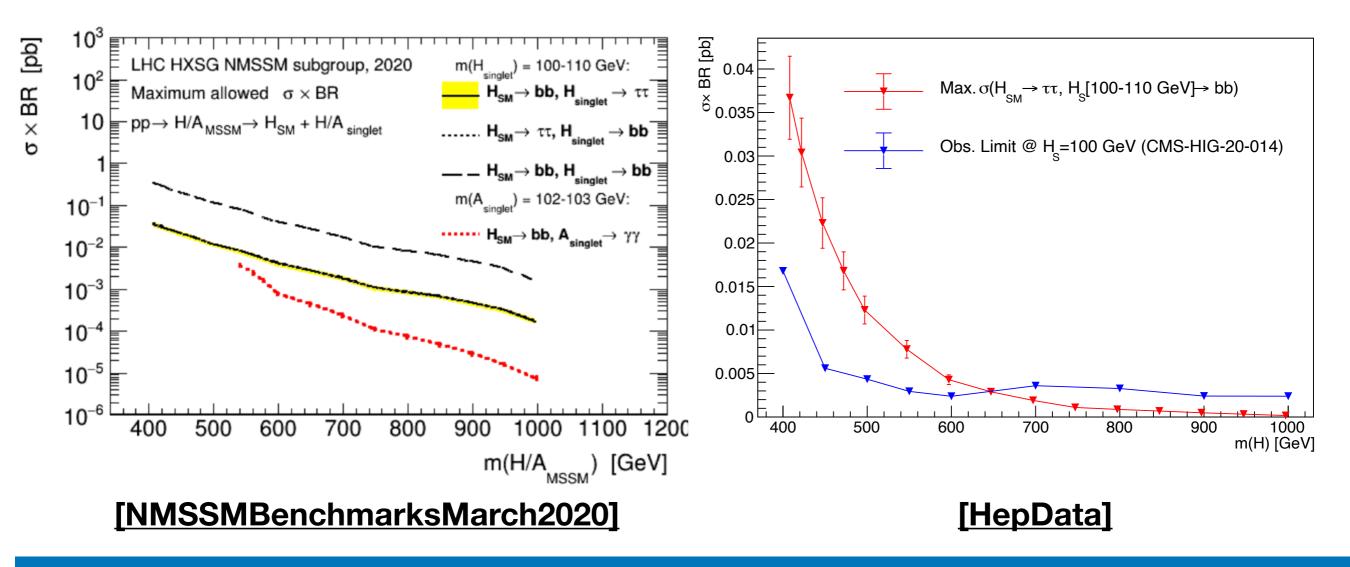
Background categories

• In each category fit maximum y_i as discriminating variable

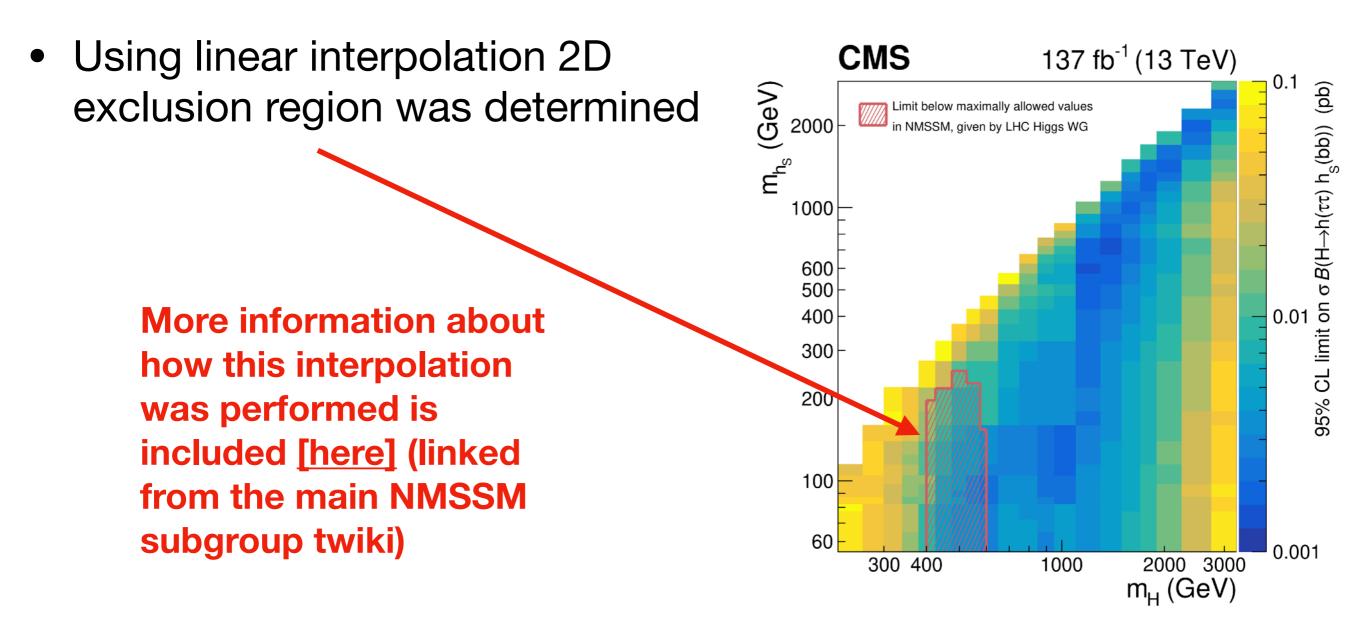

Signal categories

02/12/21

d.winterbottom@imperial.ac.uk


Results

- Analysis searched for m_H between 240—3000 GeV and m_{Hs} between 60–2800 GeV
- No statistically significant excesses observed


Comparison with NMSSM cross sections

- To assess sensitivity to NMSSM the upper limits are compared to the maximum allowed cross sections (see talk by Ulrich)
- Cross sections original only provided only for ~ constant m_{Hs} (100–110 GeV)
- Analysis is sensitive to NMSSM for $m_{H}\,{\sim}{<}\,650$ GeV

Comparison with NMSSM cross sections

 To enable 2D exclusion region of maximally allowed cross sections NMSSM working group provided additional m_{Hs} points close to exclusion boundaries

Summary

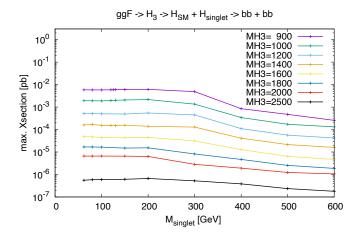
- Searched for processes well motivated in the NMSSM
- Presented an example experimental result by CMS in the $bb\tau\tau$ final state
- Comparison to maximum allowed cross sections provided by NMSSM working group show that this analysis is sensitive to the NMSSM in some mass regions
- Several complimentary other final states e.g bbbb, bbyy, $\tau\tau$ bb (H_S $\rightarrow\tau\tau$ h₁₂₅ \rightarrow bb)
 - We strongly encourage the these searched and we look forward to seeing the results in future

 $02/12/2^{-1}$

$\begin{array}{c} \mbox{Maximally possible Xsections for} \\ ggF \rightarrow H_{heavy} \rightarrow (H_{125} \rightarrow bb) + (H_{singlet} \rightarrow bb) \mbox{ in the} \\ \mbox{NMSSM} \end{array}$

Ulrich Ellwanger IJClab Université Paris-Saclay, Orsay, France

December 2, 2021


The process $ggF \rightarrow H_{heavy} \rightarrow (H_{125} \rightarrow bb) + (H_{singlet} \rightarrow bb)$ is one of the promising channels to look for an extended Higgs sector in the NMSSM

How large can this cross section be, for various masses of $H_{heavy} \equiv H_3 \simeq H_{MSSM}$ and $H_{singlet}$?

 \rightarrow Scan the parameter space using NMSSMTools, using a dedicated Monte Carlo routine, consistent with

- SM Higgs Mass + couplings (kappas) within present bounds,
- LHC searches for BSM Higgses,
- B-Physics,
- constraints from dark matter direct detection experiments.

(The NMSSM contains a neutral stable LSP which must not violate these constraints even if its relic density is below the observed one, in which case an additional hidden sector has to be assumed.)

Rough estimate of possible sensitivities: $\mathcal{O}(10^{-3})$ pb, increase to $\mathcal{O}(10^{-4}) - \mathcal{O}(10^{-5})$ pb for larger masses \rightarrow Discoveries are possible (but not guaranteed!)

Comments:

- $M_{Hs} > 62$ GeV since otherwise the parameter space is strongly constraint by limits on $H_{125} \rightarrow H_s + H_s$ leading to significantly smaller allowed Xsections.
- Otherwise: max. Xsection nearly independent from M_{Hs} (also for $M_{Hs} \sim 125$ GeV; interference effects show up only if $M_{H_{125}} - M_{Hs} \sim \Gamma_{H_{125}} \sim 4$ MeV)
- Decreasing Xsection for $M_{Hs} > 250$ GeV where $Hs \rightarrow H_{125} + H_{125}$ becomes possible reducing the $BR(Hs \rightarrow bb)$
- Further decrease of the Xsection for $M_{Hs} > 350$ GeV where $Hs \rightarrow toptop$ becomes possible reducing the $BR(Hs \rightarrow bb)$
- Prospects: Continue towards lighter values of $M_{H_{heavy}} < 900$ GeV, repeat the exercise for other channels

Good Luck!

The 18th Workshop of the LHC Higgs Working Group

NMSSM Mass Calculation

Update

M. Margarete Mühlleitner (KIT) Conveners: ATLAS: Nikolaos Rompotis CMS: Daniel Winterbottom T: Ulrich Ellwanger, MM, Nausheen Shah

Fixed Order Spectrum Calculations

- * Next-to-MSSM (NMSSM): 2 complex Higgs doublets plus complex singlet field
- + Enlarged Higgs and neutralino sector:

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

+ MSSM and NMSSM masses computed from input parameters: predictive power of the MSSM, NMSSM and other extensions -> important experimental test to be passed

Status NMSSM fixed order spectrum calculations: up to 2-loop in mixed OS-DR scheme and in DR-scheme

- $O(\alpha_t \alpha_s + \alpha_b \alpha_s)CP$ -conserving, in DRbar scheme, effective potential approach [Degrassi,Slavich,'10]

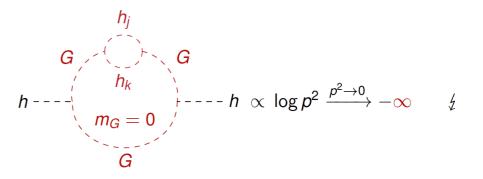
- Beyond $\mathcal{O}(\alpha_t \alpha_s + \alpha_b \alpha_s)$ CP-conserving, in gaugeless limit, DRbar scheme [Goodsell,Nickel,Staub,'15]
- CP-violating: $\mathcal{O}(\alpha_t \alpha_s)$ [MM,Nhung,Rzehak,Walz,'15] and $\mathcal{O}(\alpha_t^2)$ [Dao,Gröber,Krause,MM,Rzehak,'19] in gaugeless limit, zero-momentum limit, mixed DRbar-OS scheme, $\lambda = \kappa = 0$ at $\mathcal{O}(\alpha_t^2) =$ calculation of $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$

Further Recent Precision Developments

Further (recent) developments:

- Complete 1-loop + $O(\alpha_t(\alpha_s + \alpha_t))$ in NMSSM w/ inverse seesaw mechanism, mixed DRbar-OS scheme [Dao,MM,Phan,'21]
- FlexibleDecay: automated calculator of scalar decay widths in any BSM model [Athron,Büchner,Harries,Kotlarski,Stöckinger,Voigt,'21]
- Curing tachyonic tree-level syndrome in the NMSSM w/ light singlets [Domingo, Paßehr, '21]
- Minimize gauge-fixing parameter and field renormalization dependence in of mass and decay observables at 1-loop order [Domingo,Paßehr,'20]
- 1-loop corrections to 2-body decays of H[±] in CP-conserving and CP-violating NMSSM [Dao,MM,Patel,Sakurai,'20]

Review:


- Higgs mass predictions in the MSSM and beyond [Slavich, Heinemeyer et al., '20]

Two-Loop $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ Corrections

[Dao,Gabelmann,MM,Rzehak, 21]

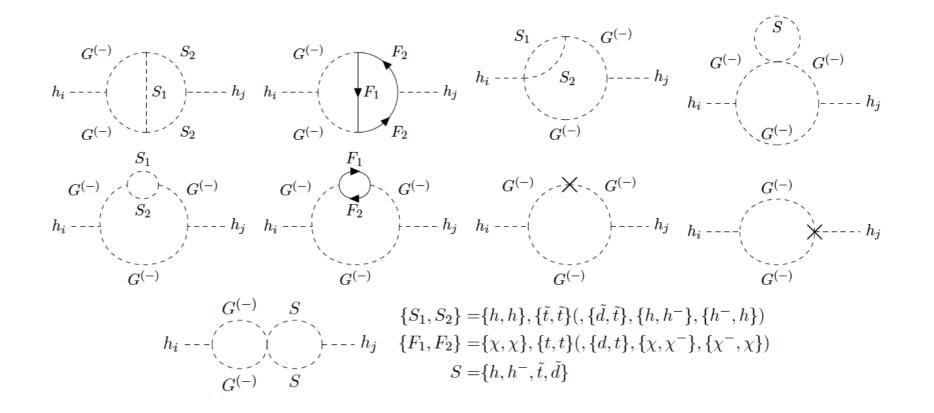
Two-Loop $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ corrections in the CP-violating NMSSM:

- mixed DRbar-OS renormalization, choice OS or DRbar in top/stop sector
- vanishing external momentum
- & gaugeless limit -> Goldstone boson catastrophe

Goldstone boson catastrophe:

- MSSM: Higgs self-couplings given by gauge couplings

$$V_{\text{MSSM}}^{\text{quartic}} \propto g_1^2 (|H_u|^2 - |H_d|^2)^2 + g_2^2 (H_u \sigma_a H_u + H_d \sigma_a H_d)^2 \xrightarrow{g_1, g_2 \to 0} 0$$


- NMSSM: additional non-zero self-couplings

$$V_{ ext{NMSSM}}^{ ext{quartic}} \propto V_{ ext{MSSM}}^{ ext{quartic}} + |oldsymbol{\lambda}H_uH_d + oldsymbol{\kappa}S^2|^2 \stackrel{oldsymbol{g_1,g_2} o 0}{\longrightarrow}
eq 0$$

=> many new two-loop diagrams with Higgs self-couplings massless Goldstone bosons => IR divergences

Regularisation of IR Divergences

Infrared-divergent 2-loop self-energies

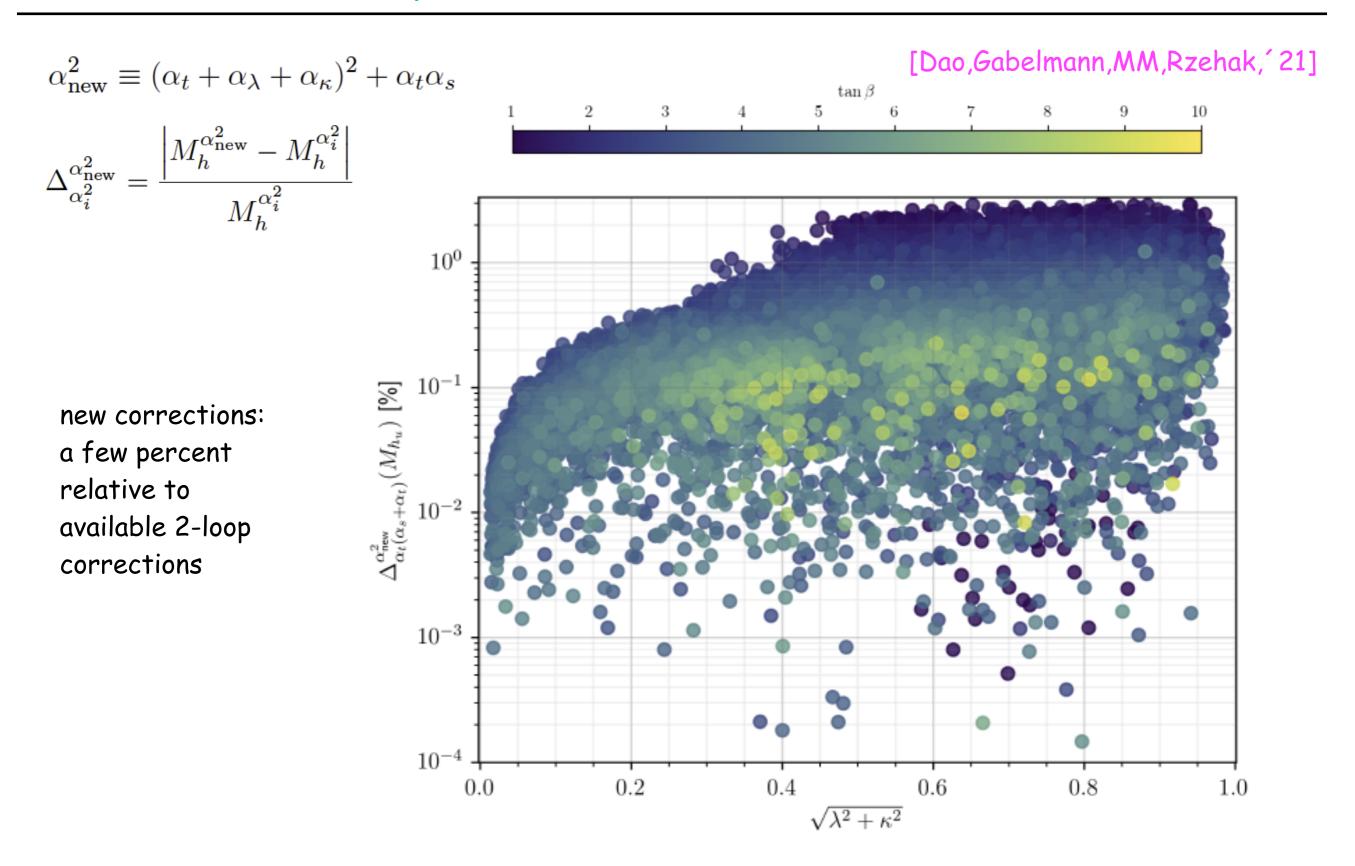
Regularisation:

- use mass regulator M^2_R in IR-divergent loop integrals (check dependence on regulator mass)
- assume $p^2 \neq 0$ in $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ diagrams -> multi-scale problem (numerical integration required TSIL [Robertson,Martin,'06])
- assume partial p² ≠ 0: only in IR-divergent diagrams, analytic results for small p² expansion [Braathen,Goodsell, 16, 17]

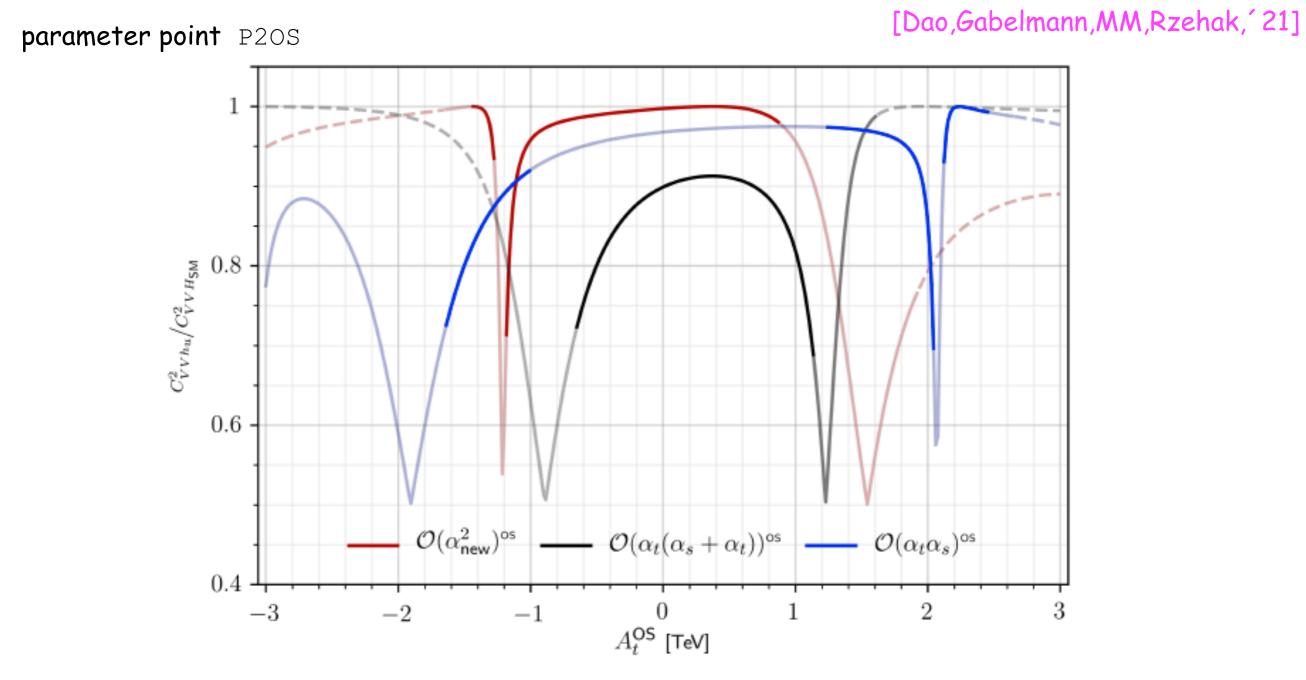
Numerical Results

New corrections implemented in NMSSMCALC [Baglio,Gabelmann,Gröber,Krause,Rzehak,MM,Nhung,Spira,Streicher,Walz]

Scan in NMSSM parameter space:


$\kappa = \lambda \cdot \xi > 0.7$ amittad	parameter	scan range [TeV]	parameter	scan range
$\kappa = \lambda \cdot \xi > 0.7$ omitted	$M_{H^{\pm}}$	[0.5, 1]	$\tan\beta$	[1, 10]
$A_i = 3 \text{ TeV}, i=b, \tau, \kappa$	M_1, M_2	[0.4, 1]	λ	[0.01, 0.7]
SUSY breaking masses and	M_3	2	κ	$\lambda \cdot \xi$
trilinear couplings: DRbar	$\mu_{ ext{eff}}$	[0.1, 1]	ξ	[0.1, 1.5]
parameters at	$m_{\tilde{Q}_3}, m_{\tilde{t}_R}$	[0.4, 3]	A_t	[-3, 3] TeV
$\mu_0 = M_{\rm SUSY} = \sqrt{m_{\tilde{Q}_3} m_{\tilde{t}_R}}$	$m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R}$	3	$A_{i \neq t}$	[-2, 2] TeV

compatibility with Higgs data, one Higgs, called h, must behave SM-like with 122 \leq m_h \leq 128 GeV [HiggsSignals,HiggsBounds]


omit parameter points with mass configurations:

$$\begin{array}{ll} (i) & m_{\chi_{i}^{(\pm)}}, m_{h_{i}} > 1 \, {\rm TeV}, m_{\tilde{t}_{2}} > 2 \, {\rm TeV}, \\ (ii) & m_{h_{i}} - m_{h_{j}} < 0.1 \, {\rm GeV}, m_{\chi_{i}^{(\pm)}} - m_{\chi_{j}^{(\pm)}} < 0.1 \, {\rm GeV} \\ (iii) & m_{\chi_{1}^{\pm}} < 94 \, {\rm GeV}, m_{\tilde{t}_{1}} < 1 \, {\rm TeV} \ . \end{array}$$

Impact of New Corrections

Phenomenological Impact

- squared coupling of SM-like Higgs to gauge bosons relative to SM value
- transparent lines: excluded by HiggsSignals or Higgs mass constraints not fulfilled
- full: h_1 is SM-like, dashed: h_2 is SM-like

Conclusions

- computation of $\mathcal{O}((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ corrections to CP-violating NMSSM Higgs masses at zero external momentum, in the gaugeless limit, in mixed OS-DRbar renormalisation scheme, implemented in NMSSMCALC
- 3 regularisation methods for IR divergences:

regulator mass approach reproduces momentum-dependent results well for squared regulator masses of a permille of the squared renormalisation scale

- for perturbative λ,κ values: new corrections are of a few percent, reduce slightly theoretical uncertainty due to missing higher orders (renormalisation scheme/renormalisation scale variation)
- impact of new corrections on Higgs mixing, hence Higgs couplings to SM particles, is significant => strongly affects compatibility with the Higgs data
- impact of CP-violating phases on the new corrections is small
- next steps/open issues: uncertainty estimate, scheme choice dependence of charged Higgs mass; full external momentum at $O(\alpha_{t}\alpha_{s})$; gauge coupling dependent corrections; 3-loop corrections; ...

Thank you for your attention!

Benchmark Points - P105

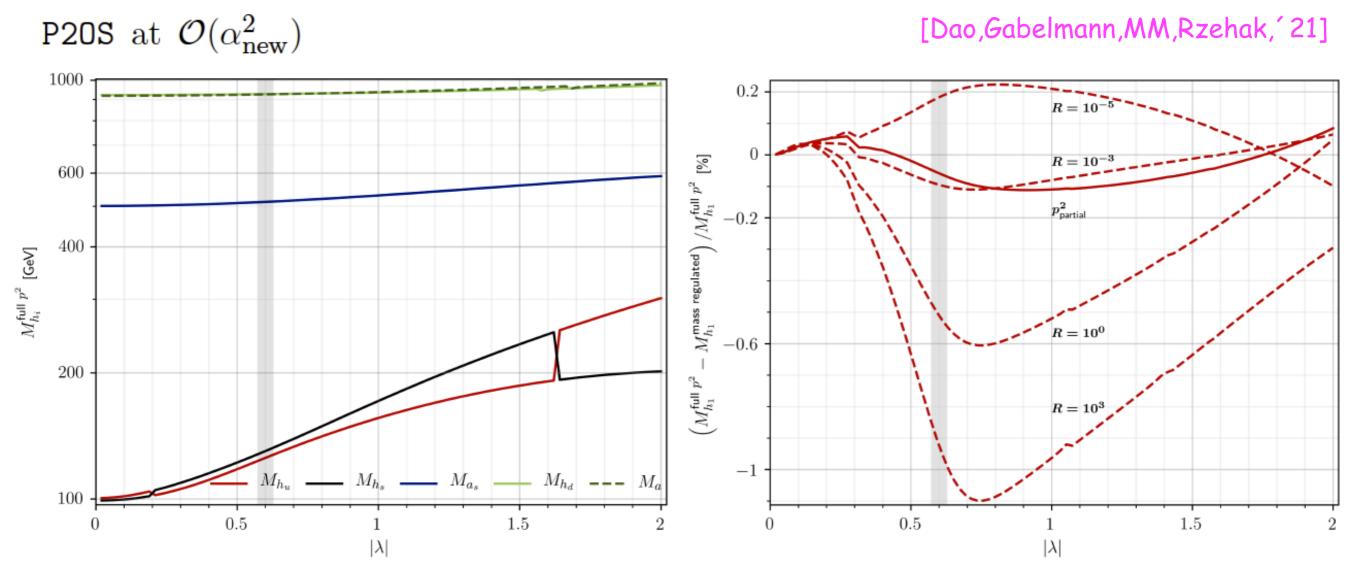
$$\begin{split} |\lambda| &= 0.46 \,, \, |\kappa| = 0.43 \,, \, \operatorname{Re}(A_{\kappa}) = -4 \,\, \operatorname{GeV} \,, \, |\mu_{\text{eff}}| = 200 \,\, \operatorname{GeV} \,, \, \tan \beta = 3.7 \,, \\ M_{H^{\pm}} &= 640 \,\, \operatorname{GeV} \,, \, m_{\tilde{Q}_3} = 1 \,\, \operatorname{TeV} \,, \, m_{\tilde{t}_R} = 1.8 \,\, \operatorname{TeV} \,, \, m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \,\, \operatorname{TeV} \,, \\ A_t &= 2 \,\, \operatorname{TeV} \,, \, A_{i \neq t, \kappa} = 0 \,\, \operatorname{GeV} \,, \, |M_1| = 2|M_2| = 800 \,\, \operatorname{GeV} \,, \, M_3 = 2 \,\, \operatorname{TeV} \,. \end{split}$$

OS renormalisation in top/stop sector, in brackets: numbers for DRbar renormalisation

	h_1	h_2	h_3	a_1	a_2
tree-level	87.64	365.32	646.65	103.09	639.83
main component	h_u	h_s	h_d	a_s	a_d
one-loop	133.97	359.42	646.67	116.51	639.78
	(115.21)	(359.35)	(646.4)	(116.8)	(639.8)
two-loop $\mathcal{O}(\alpha_t \alpha_s)$	119.09	359.36	646.5	116.76	639.81
	(119.98)	(359.37)	(646.43)	(116.69)	(639.79)
two-loop $\mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	125.58	359.36	646.6	116.76	639.81
	(120.15)	(359.37)	(646.43)	(116.69)	(639.79)
two-loop $\mathcal{O}(\alpha_{\text{new}}^2)$	125.03	359.68	646.62	116.58	639.77
	(120.18)	(359.59)	(646.47)	(116.63)	(639.78)

Benchmark Points - P2OS

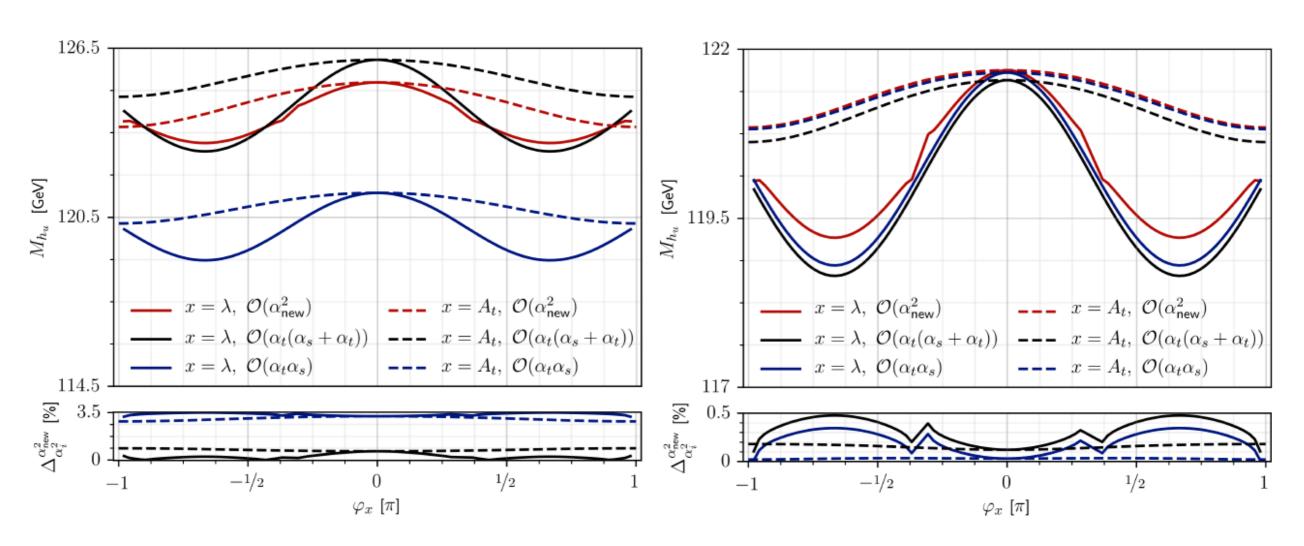
$$\begin{split} |\lambda| &= 0.59 \,, \, |\kappa| = 0.23 \,, \, \operatorname{Re}(A_{\kappa}) = -546 \,\, \operatorname{GeV} \,, \, |\mu_{\text{eff}}| = 397 \,\, \operatorname{GeV} \,, \, \tan \beta = 2.05 \,, \\ M_{H^{\pm}} &= 922 \,\, \operatorname{GeV} \,, \, m_{\tilde{Q}_3} = 1.2 \,\, \operatorname{TeV} \,, \, m_{\tilde{t}_R} = 1.37 \,\, \operatorname{TeV} \,, \, m_{\tilde{X} \neq \tilde{Q}_3, \tilde{t}_R} = 3 \,\, \operatorname{TeV} \,, \end{split}$$
(107)
$$A_t &= -911 \,\, \operatorname{GeV} \,, \, A_{i \neq t, \kappa} = 0 \,\, \operatorname{GeV} \,, \, |M_1| = 656 \,\, \operatorname{GeV} \,, \, |M_2| = 679 \,\, \operatorname{GeV} \,, \, M_3 = 2 \,\, \operatorname{TeV} \,. \end{split}$$


OS renormalisation in top/stop sector

DRbar renormalisation

	h_1	h_2	h_3	a_1	a_2
tree-level	96.86	112.10	926.25	511.34	925.86
main component	h_u	h_s	h_d	a_s	a_d
one-loop	129.01	135.09	926.69	512.55	925.08
main component	h_s	h_u	h_d	a_s	a_d
two-loop $\mathcal{O}(\alpha_t \alpha_s)$	121.36	129.7	926.37	512.62	925.11
main component	h_u	h_s	h_d	a_s	a_d
two-loop $\mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	126.09	130.04	926.49	512.62	925.11
main component	h_u	h_s	h_d	a_s	a_d
two-loop $\mathcal{O}(\alpha_{\text{new}}^2)$	125.28	129.92	926.63	511.92	925.08
main component	h_u	h_s	h_d	a_s	a_d

	h_1	h_2	h_3	a_1	a_2
tree-level	96.86	112.10	926.25	511.34	925.86
main component	h_u	h_s	h_d	a_s	a_d
one-loop	116.3	130.1	926.33	512.66	925.18
two-loop $\mathcal{O}(\alpha_t \alpha_s)$	121.65	130.39	926.46	512.61	925.15
two-loop $\mathcal{O}(\alpha_t(\alpha_s + \alpha_t))$	121.54	130.38	926.45	512.61	925.15
two-loop $\mathcal{O}(\alpha_{\text{new}}^2)$	121.69	130.2	926.53	512.12	925.15


Comparison of Regularization Schemes

left: $M_{h_1}^{full-p^2}$, i.e. $p^2 \neq 0$ in $O((\alpha_t + \alpha_\lambda + \alpha_\kappa)^2)$ diagrams

right: comparison of $M_{h_1}^{full-p^2}$ with mass regulator and with partial momentum results R = M_R^2/μ_R^2

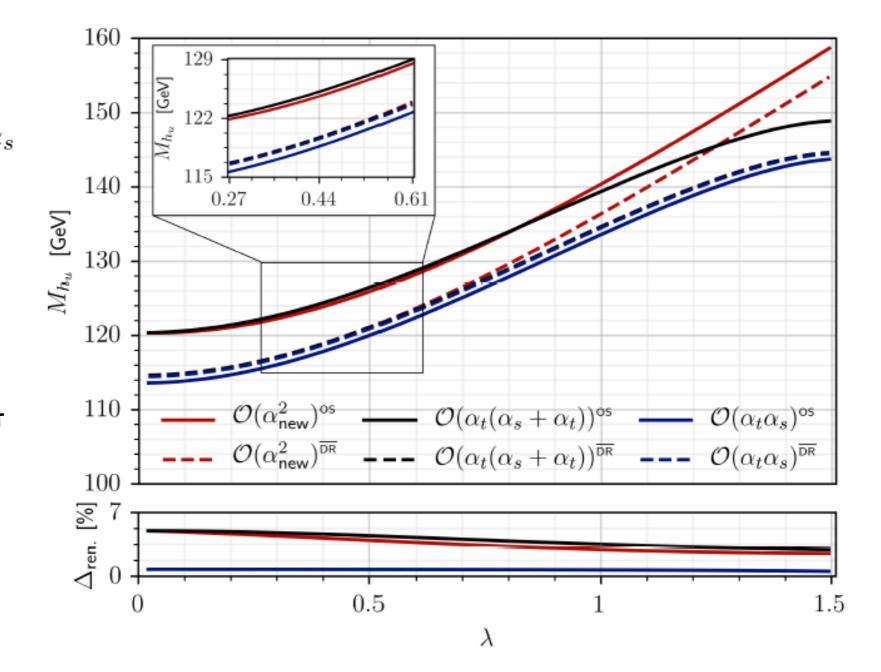
Radiatively Induced Effect of CP Violation

parameter point P20S

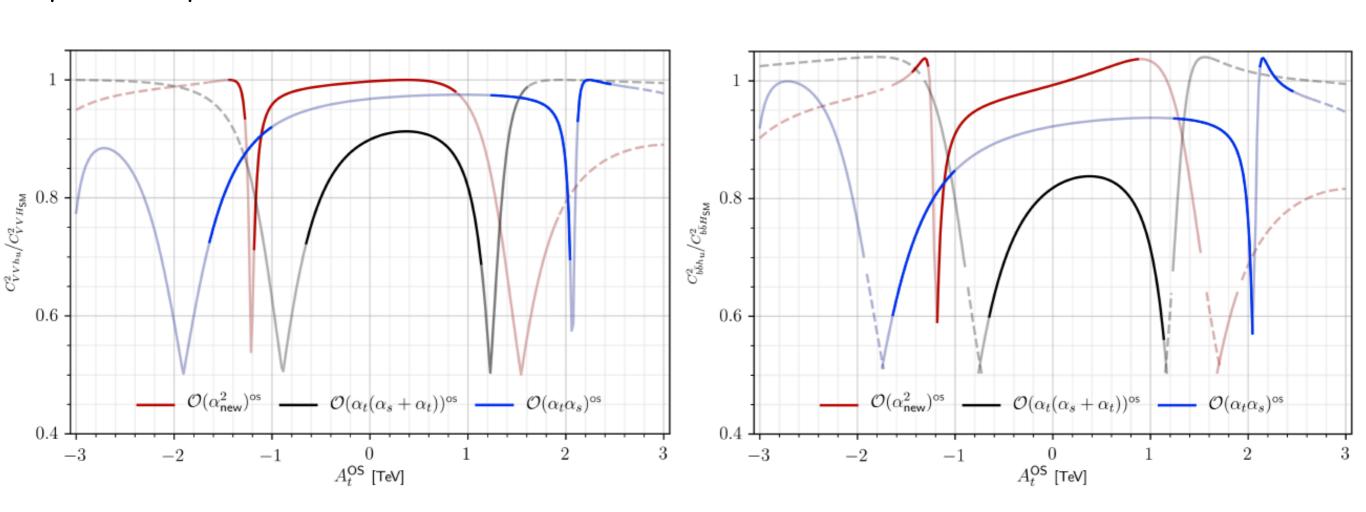
- phases not varied simultaneously
- lambda phase varied such that tree-level
 CP violation in Higgs sector is zero

[Dao,Gabelmann,MM,Rzehak, 21]

 $\Delta_{\alpha_i^2}^{\alpha_{\rm new}^2} = \frac{\left| M_h^{\alpha_{\rm new}^2} - M_h^{\alpha_i^2} \right|}{M_h^{\alpha_i^2}}$


Impact of New Corrections

parameter point Plos


[Dao,Gabelmann,MM,Rzehak, 21]

$$\alpha_{\text{new}}^2 \equiv (\alpha_t + \alpha_\lambda + \alpha_\kappa)^2 + \alpha_t \alpha$$
$$\Delta_{\text{ren}} = \frac{\left| M_h^{m_t(\overline{\text{DR}})} - M_h^{m_t(\text{OS})} \right|}{M_h^{m_t(\overline{\text{DR}})}}$$

- new corrections a few percent relative to available 2-loop
- renormalisation scheme dependence slightly reduced

Phenomenological Impact

 squared couplings of SM-like Higgs compared to squared SM coupling for gauge bosons (left) and bottom quarks (right)

parameter point P2OS

 transparent lines: excluded by HiggsSignals or Higgs mass constraints not fulfilled

[Dao,Gabelmann,MM,Rzehak, 21]

- full: h_1 is SM-like, dashed: h_2 is SM-like