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INntroduction

STXS measurements are very common in the Higgs
group + provide a convenient way to parametrize the
uncertainties

STXS recommendations have two parts - bin
definition + associated uncertainty
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ggF Stage 1.2 had a preliminary systematic scheme

Tons of work put into the defining a new scheme -
~ year long collaboration with people from ATLAS,
CMS & theorists all involved

Collaborations across various LHC XS WGs!

Results documented @ Link, working on releasing a
_HC HWG document
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https://indico.cern.ch/event/796065/contributions/3307675/attachments/1799797/2935242/VBF-STSX-HXSWG-WG1-FEB.pdf
https://gitlab.cern.ch/LHCHIGGSXS/LHCHXSWG2/STXS/VBF-Uncertainties/blob/master/qq2Hqq_uncert_scheme.cpp
https://indico.cern.ch/event/931479/contributions/3914587/attachments/2064037/3463445/STXSUncUpdate250620.pdf
https://gitlab.cern.ch/anigamov/vh-stxs-uncertainties
https://indico.cern.ch/event/931479/contributions/3915611/attachments/2064036/3463653/ttHSTXSunc_updated.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/HIGG-2021-01/

Uncertainty scheme - ggF

Couple of key ingredients that need to be defined for such a scheme:

Common default MC - ATLAS: Powheg & CMS: MGSH - Both with NNLOPS reweighing

Stage 1.2
Talks on harmonizing this even further for Run 3

List of NPs to parametrize the uncertainty

All stakeholders need to agree on this - defines how to correlate the systematics
Many meetings within the LHC XS WG - Finalized a common scheme @ Link

The method to numerically evaluate impacts across bin boundaries

Year long collaboration on the methodology - an evolution of the ST method settled
as the main choice - used for other production modes as well

Final numbers evaluated by applying this methodology - can be updated as better
calculations come

Systematics impacting the acceptance - shapes within an STXS bin

Largely agreed to leave this up to each analysis as there are too many possibilities
But there is proposal on how to cover for this - Not covered in this talk



https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCHWGFiducialAndSTXS/simplifiedXS_ggF_1.2_theory_uncertainty.pdf

Parameter Scheme



NP scheme

Final decision from discussions documented @ Link
This is an evolution of the Stage 1 theory scheme with many common parts taken directly
Overall, 18 NPs have been decided upon to parameterize the uncertainties

_ tt Overall vield and jet migration (4 NPs):
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https://twiki.cern.ch/twiki/pub/LHCPhysics/LHCHWGFiducialAndSTXS/simplifiedXS_ggF_1.2_theory_uncertainty.pdf

NP scheme

Stage 1.2
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Uncertainty evaluation



Long range ST method

Many ways to evaluate - all involve varying the muR & muF scales and using the XS variations
Builld upon the ST method to remove some of its limitations - LR ST method collaboratively developed

Distribute t
| eads to dou

ne migration sys across al

—valuate the yield variations inclusively and replace with better calculation it available

‘higher’ bins

ole counting - If we apply

Introduce p scaling param to prevent this - no clear way to estimate this correlation theoretically

Nominal choice of p = 0.5 chosen to ensure that total variation is ~ equal to the scale variations in that bin

Bin definitions

Long range ST method

‘he same method in myy>350 and myJy>700, double counting in the upper region

Take the max scale variation inclusive

between k and > k+1 bins
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Inclusive and Jet migrations

No change from the Stage 1 scheme
Jse BLPTW method from the YR4
These end up being the ‘yield’” uncertainties when we evaluate other uncertainties
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L ow ptH region - O jet topology

Scheme developed a few years ago - approved as part of the Stage 1.1 scheme - Link
—nvelop of HNNLO NNLOPS/muR/mufF scale taken as the sys
No application of long range method - only one bin boundary

Dominant effects are from low prt resummation

Care taken to ensure that uncertainty in the regions are in line with calculations
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https://indico.cern.ch/event/826136/contributions/3560470/attachments/1927385/3190999/ggFSyst_LHCXSWG_ATLAS_CMS.pdf
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L ow ptH region - 1/2 jet topology
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L ow ptH region - 1/2 jet topology

Derive the results iIn = 1 jet region

Since prt shape changes in jet regions, apply a different smoothing function to distribute the XS impact evenly
across prh

Only place where smoothing is applied - pr is typically correlated with acceptance effects due to analysis selection
Smoothing allows to get the impact of these acceptance effects
Non-trivial to parameterize other variables once prt™ has been smoothed - tackle in the next iteration of the scheme
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2 Jet region - m;j

Uncertainties for mj are a simple application of the long range method
Scale variation from FxFx used as it is NLO @ 2]

Cross-checked results with NNLOPS, MG5 H+2J and Hjj MINLO
—nsured that migration uncertainties cancel out when applied to NNLOPS
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Cross section, o [pb]

variation / nominal

2 Jet region - prHi

otHl is an indirect probe for Niet (o7 > 30 GeV) - there is significant leakage at the ptHi = 25 GeV boundary
Consistently found the same behaviour across generators
Need a better probe for Njet = 2 < Njet = 3 migrations

Leads to an artificial increase Iin the systematic in the lower bin
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2 Jet region - prHi

Due to differences in the prfii shape at NLO (FxFx) vs LO (NNLOPS), the impact in the upper bin increased
to O(30%) ensure the migration uncertainty cancel out overa

Cross-checked results with NNLOPS, MG5 H+2J and Hjj MINLO
p set to 1 as there is only one bin
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High pr™

region - Scale variation

Significant

Dedicateo

Matthias Ke

Very recent

improvements to the uncertainty scheme in pr > 200 GeV region
theoretical calculations and associated QCD scale uncertainty - 1802.00349
ner & Stephen Jones extended and provided results in
—nsured that these results are consistent with the NN
y found that the top mass effect was overes

the needed binning
PS results
imated - numbers will be updated ASAP
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https://arxiv.org/abs/1802.00349

High ptH region - Scale variation

Afterwards a normal application of the long range method
In this case, yield migration is kept as a separate NP
SBLPTW Is not expected to cover this region
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High pt™ region - ptHi/ptH

orH/pr to account for Njet = 1 <-> Njet = 2 migration
Similar to pt™ probing Njet = 2 <-> Njet = 3 at lower pr"
Checked to ensure cut at 0.15 is a good probe for this effect

p set to 1 as there is only one bin

Results cross-checked with MG FxFx sample
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High ptH region - top mass scheme

Various calculations show that top mass scheme can lead to difterent prediction in the high pt™ region -
source of uncertainty

Calculati

Calcu

O

q

'loNs of O

ns with MSbar and pole mass only available at LO - Michael Spira
her processes show ~2x reduction in the difference between these schemes at NLO
‘ake half of the difference for Higgs pr™ as a systematic uncertainty

Independent from the previous high ptH calculation - not impacted by the top mass issue
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Conclusion

Significant work has been invested in defining the uncertainty scheme for the ggF Stage 1.2 STXS scheme
Collaborative effort between ATLAS, CMS and theorists!

Complete version of both the nuisance parameter scheme and the associated numbers available!
Small update to come for the high pT scheme
Results documented @ Link which can be implemented by the analyses

Plan to document these results in a LHC HWG notel

Potential improvements to the scheme in the future
Account for systematics variations across multiple dimensions
SMmooth parameterization across variables
Harmonization of the acceptance/with-bin uncertainties across ATLAS & CMS

However, next main critical uncertainty to tackle is the shower uncertainty
t Is the leading systematic across many analyses - impact will get even large with more data!
Need a consistent and unified approach to parametrize this uncertainty

20


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/HIGG-2021-01/
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Evaluating the uncertainty

Many ways - all involve varying the renormalization & factorization scale and using the XS variations in some NP
scheme

Our current go-to is the ST method - One NP for overall yield variation and other NP for migration between categories
Removes the accidental cancellation of scale variations

Bin definitions ST method
| | | 0 L j<k Tgk? thg maﬁ chle
I I S, vy . variation in = k region
I I ¢ . ” 67(j) {+max |Ay sil/oj 2 j=k and apply as yield NP in
5 : l l 0 j>k+1 k bin
| X1 Xj-1 X j
I ; . . — 0 j <k
S U o o & M A N Take the max scale
E E : : Oﬁﬁg(j) —max |Ay >ka1l/oy 1) = variation in = k+1 region
i i i i “ +max |Ay sk+1|/o; :j=k+1  andapply as migration
o1 L A 0 . i>k+2 NPinkandk+1 bin

But this method breaks down in the case of many or small bin width - unphysical blow up of uncertainty if XS Is
small

For continuous variables, like pTH, it makes no sense that migration will be only between two neighbouring bins
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Long range ST method

Kinematic observable x

Nuisance parameter | 0 <x <a |a<x<b | x=>Db

o oy *oy 0y
O - PO, | po,  pdg
0, _ po, | pdy

p chosen to remove the overlap
between x > a and X > b uncertainty values

6> as the max scale variation

N the

inclusive X region - 6, = max(A)/c

oMY as the max scale variation

N the

X > a region. First bin as the negative of

this value as the uncertainty
6 =max(A. /o,
o, =—max(A. )/ o,

09 as the max scale variation
N the X > b region. Second bin as the negative

of this

value, with no sys applied to the first bin

5[;“ = max(A,. )/ 0,

519_ — maX(Ax>b)/0a<x<b
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Samples used for theory sys

Generated Samples

Name Description Generator Shower PDF Variations Other Notes
PownteG NNLOPS H+0j@NNLO POW HEG PyTHia 8, AZNLO tune | PDFALHC15_nlo_30_pdfas (HR. p) variations NNLOPS reweighting
(7-point NLO, 3-point NNLO) Rescaled for quark mass effects
MINLO HJ H+1j@NLO POW HEG PyThia 8, AZNLO tune | PDFALHC15_nlo_30_pdfas 7-point (ug, ig) variations Res"ale‘;(i;’;gﬁ:_"z‘ (‘;(‘)‘ iects
MINLO HIJJ H+2j@NLO POWHEG Pythia 8, AZNLO tune | PDF4LHC15_nlo_30_pdfas 7-point (ug, pg) variations Rescaled quark mass effects
H+1j MG5_aMC@NLO H+1j@NLO MGS5_AMC@NLO | Pythia 8, AZNLO tune | NNPDF30_nlo_as_0118 7-point (g, ig) variations HC,;NLO—i)i(:_"”:" '“gdel
top = s Hp =
FxFx merging
: : - oy ST merging scale = 30 GeV
H+0.1.2] MG5_AMC@NLO (FxFx) H+0.1,2j@NLO MGS5_AMC@NLO | PyrHia 8, AZNLO tune NNPDF30_nlo_as_0118 7-point (ug. pg) variations HC_NLO_XO0-heft model
Myop = inf, mp =0
Calculations
Name Description Reference PDF Variations Other Notes
NLO_SM H+1j@NLO with finite top mass arXiv:1802.00349 PDF4LHC15_nnlo_mc FSpout Varsalsons of Ui, fie) mE= £ Gey
around Et = \/m%, + DTy > 1 jet with py > 30 GeV
Pole mass arXiv:2003.01700, arXiv:1811.05692 M S mass variations mt(mt), mt( Ep/2), mt(Ey), mt(2Et),

(and other top mass variations)

H+1j@LO with finite top mass

arXiv:2003.03227, arXiv:2008.11626

~ 2 2
with E1 = \/mH + Py
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Acceptance effects + uncovered variables



Acceptance effect + other variables

Almost all uncertainty numbers are applied flat in a STXS bin

f analysis selection shapes the acceptance or ML algorithm uses the variable, the uncertainty will
factorize

Many other QCD sensitive variables not covered by this scheme
This leads to an underestimation

Way around it - provide one scale variation (e.g. muF = muR = 0.5) as part of the implementation of the
scheme

To avoid ‘significant’ double counting, normalize scale variation in STXS bin to remove overall XS
Provided as one additional NP

This proposal has some still has double counting

If NP is pulled/constrained/ranked highly - ask analysis to do detailed checks & make decisions on an
case-by-case level

Leave this up to the collaboration to define how to implement this
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