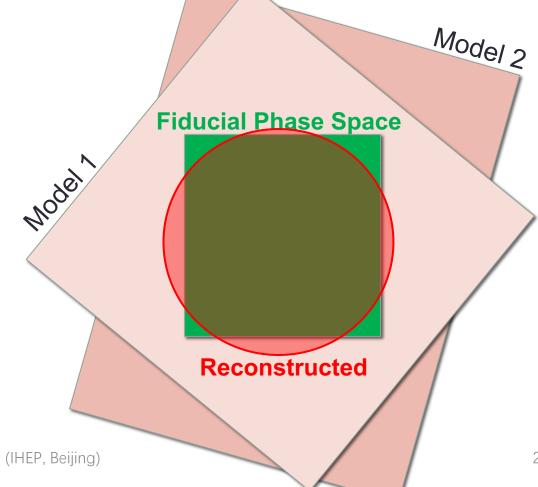
Differential fiducial measurements: next steps and combination

Mingshui Chen (IHEP, Beijing)

The 18th Workshop of the LHC Higgs Working Group


Many thanks to N. Berger, M. Donega, A. Gilbert, A. Marini, P. Milenovic, K. Mimasu, G. Panico for helpful discussions

2021/12/1

Introduction

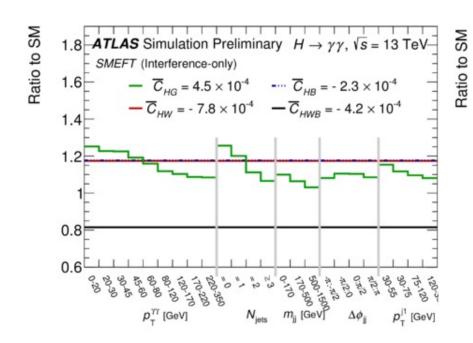
Differential fiducial cross section measurements – A complementary framework to probe Higgs kinematics

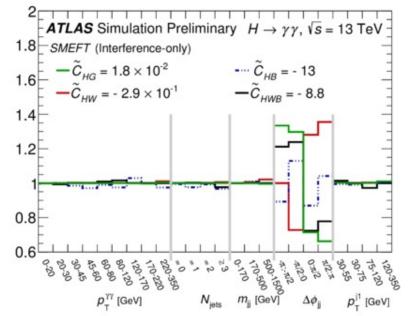
- Target fiducial region closely matching experimental selection
- Unfolded to particle-level quantities
- Largely model-independent measurements
- Long measurement lifetime and easy comparison with different theories

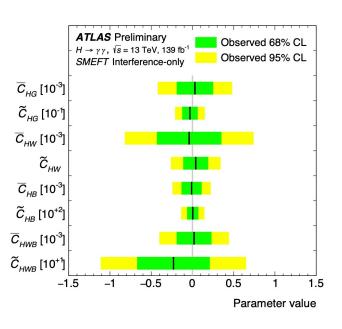
Status on the experimental results

Differential results based on Full Run-2 data

Details in Ed Scott's talk at Higgs2021 and J. Langford's talk in WG1 session

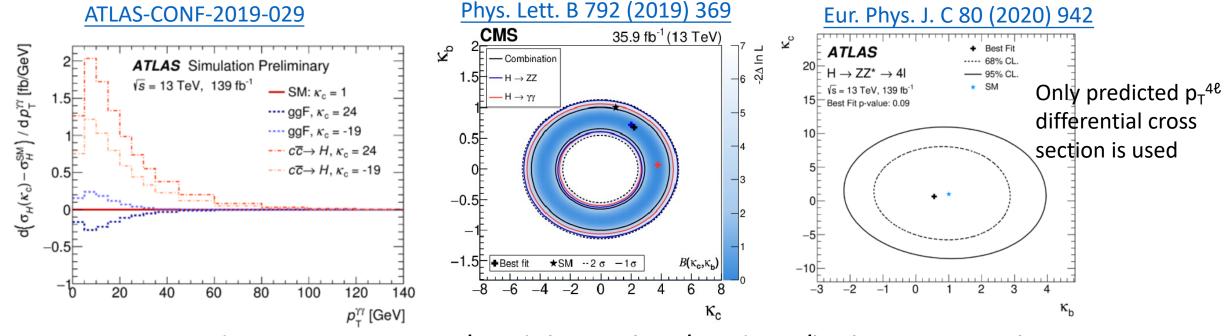

	H->ZZ*->4I	Η->γγ	H->WW	Η->ττ	H->bb
ATLAS					
CMS	V				


https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

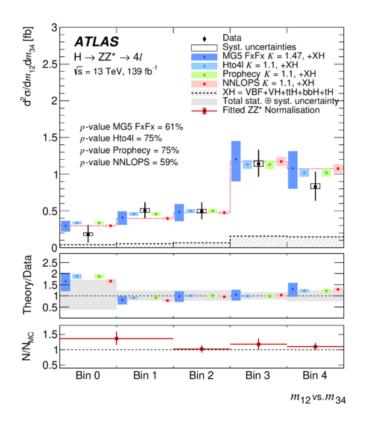

- Excellent array of results, also interpretations in EFT, κ-framework, pseudo-observables
- Still ongoing efforts in experiments to provide more measurements

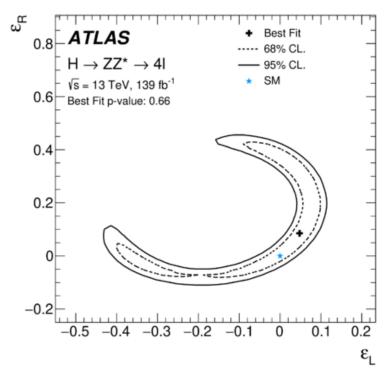
Interpretations: constraints on EFT operators

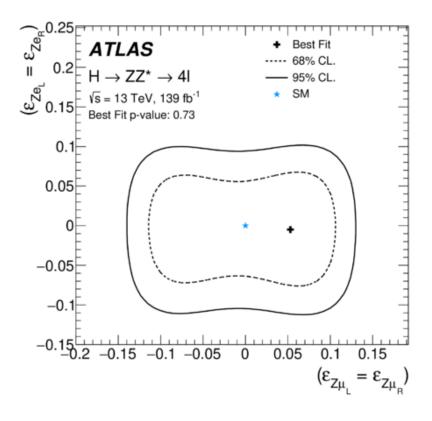
- What observables to be used
 - Different sensitivities on different operators from different observables
- Lots of discussion on common aspects is ongoing in LHC EFT WG
- SMEFT(sim | @NLO) as a starting point



Interpretations: constraints on $\kappa_c \kappa_b$ in κ -framework


• pT spectrum sensitive to the change of lighter quark Yukawa couplings (primarily low p_T^H regions, arXiv:1606.09253)




- Improved ggH computation/modeling in low/medium/high pT regions has emerged since 2017
 - We could benefit from these improvements with full run2 dataset
 - Need to discuss and converge on a common prescription (on a timescale expected for Run 2 LHC combination)

Interpretations in pseudo-observables framework

- Constraints on modified contact terms between H/Z bosons and left- and right-handed leptons ($\epsilon_{Z,IL}$, $\epsilon_{Z,IR}$)
 - m12 vs m34 (leading vs sub-leading Z boson mass) used

Towards combinations

- Combination of multiple channels within one experiment is already ongoing within the single collaborations
- ATLAS+CMS combinations
 - Multiple channels: full blown combination with extrapolation to full phase space
 - Single channel: try to get to a common phase space, minimizing the extrapolation uncertainties
- There have been efforts to harmonize on several aspects towards these combinations
 - Choice and definition of variables
 - Binning for differential variables
 - Signal extraction and unfolding
 - Common regions for single-channel combination
- A twiki page has been created to summarize all the key information
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/DifferentialRun2

Choice of variables

Differential results (being) produced for many variables in golden channels

$\mathrm{H}4\ell$	${ m H}\gamma\gamma$
Higgs-related	l variables
$p_T^{4\ell}, y_{4\ell} $	$p_T^{\gamma\gamma}, y^{\gamma\gamma} $
m_{12}, m_{34}	$p_T^{\gamma 1}/m_{\gamma \gamma}, p_T^{\gamma 2}/m_{\gamma \gamma}$
$ \cos\theta* ,\cos\theta_1,\cos\theta_2$	
ϕ,ϕ_1	
Jet-related	variables
$N_{ m jets}, N_{b- m jets}$	$N_{\mathbf{jets}}, N_{b-\mathbf{jets}}$
$p_T^{\mathbf{lead.}}$ jet $p_T^{\mathrm{sublead.}}$ jet	$p_T^{ extbf{lead. jet}}, au, au_1$
$m_{jj}, \Delta \eta_{jj} , \Delta \phi_{jj}$	$m_{jj},\Delta\phi_{jj},H_T$
$p_T^{4\ell j},p_T^{4\ell jj}$	$p_T^{\gamma\gamma j},~p_T^{4\gamma\gamma jj}$
$m_{4\ell j},m_{4\ell jj}$	$m_{\gamma\gamma j} \ \Delta\phi_{\gamma\gamma jj}$

+ Double Differential

To agree on which channels will be included for which variables

- Multiple-channels ATLAS+CMS combinations
 - Higgs production variables, i.e. Higgs pT and rapidity
 - Jet-related variables, e.g. Njets, pT of leading jet, etc
- Single-channel ATLAS+CMS combinations
 - + some decay side variables

Only a couple variables produced in other channels

Definition of the fiducial phase space

ATLAS

EPJC 80 (2020) 942

CMS

EPJC 81 (2021) 488

e.	g.
in	H4l
ch	anne

	LFJC 60 (2020) 342
Leptons and jets	
Leptons	$p_{\rm T} > 5 {\rm ~GeV}, \eta < 2.7$
Jets	$p_{\rm T} > 30 \; {\rm GeV}, y < 4.4$
Lepton selection and pairing	
Lepton kinematics	$p_{\rm T} > 20, 15, 10 \text{ GeV}$
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Subleading pair (m_{34})	Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $
Event selection (at most one quadruplet per eve	nt)
Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV} \text{ and } 12 \text{ GeV} < m_{34} < 115 \text{ GeV}$
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$
Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$
If extra lepton with $p_T > 12 \text{ GeV}$	Quadruplet with largest matrix element value

Requirements for the H $ ightarrow 4\ell$ fiducial ph	
Lepton kinematics and isolation	1
Leading lepton p_{T}	$p_{\mathrm{T}} > 20\mathrm{GeV}$
Next-to-leading lepton p_T	$p_{\mathrm{T}} > 10\mathrm{GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\mathrm{T}} > 7(5)\mathrm{GeV}$
Pseudorapidity of electrons (muons)	$ \eta < 2.5$ (2.4)
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from leptor	on $< 0.35 p_{\mathrm{T}}$
Event topology	
Existence of at least two same-flavor OS lepton pairs, where leptor	ons satisfy criteria above
Inv. mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$
Inv. mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$
Distance between selected four leptons	$\Delta R(\ell_i, \ell_i) > 0.02$ for any $i \neq j$
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4\text{GeV}$
Inv. mass of the selected four leptons	$105 < m_{4\ell} < 140{ m GeV}$

- Different thresholds in decay object selection, whether cut on isolation, H candidate selection
 - Relevant for single-channel combinations
- Main issue is jet definition which particles are clustered and what η restriction
 - Currently jet in CMS not including neutrinos in the clustering (similar to reco level -> less model dependence)
 - Discussed use of STXS definition: anti-kT R=0.4 jets (including neutrinos) with pT > 30 GeV and no η restriction

Which regions we unfold to

- Unfold to full phase spaces
 - Acceptance and correction factors computed from SM predictions
 - In case of EFT interpretations, need to parametrize acceptance as function of operators
- Common fiducial regions for single-channel combination
 - Differences in event selection complicate defining a common region
 - Still envelop of two experiments (extrapolated to the looser selection region)
 - → likely small change in model-dependence
 - Need inputs from the theory side
 - Motivations for a common fiducial region
 - Requirements from the theory side
- A common RIVET routine would be useful
 - To ensure we unfold to same thing
 - ATLAS H->γγ already use Rivet routine to obtain the fid. diff. predictions

Binning scheme

- Set of bins measured by analysis, i.e. aligned with reco. selection (full Run2 dataset)
- Finer binning (in workspaces) make sense for the LHC combination, and also for future increase in sensitivity (e.g. Run2+Run3 combination)

e.g. Higgs pT bin boundaries in GeV

Finest binning	0	5	10	15	20	25	30	35	45	60	80	100	120	140	170	200	250	300	350	450	650	1000	inf
ATLAS H->γγ	0	5	10	15	20	25	30	35	45	60	80	100	120	140	170	200	250		350			1000	
ATLAS H->ZZ	0		10		20		30		45	60	80		120			200			350			1000	
CMS H->ZZ	0		10		20		30		45		80		120			200							inf
CMS H->WW	0				20				45		80		120			200							inf
CMS H-> ττ	0								45		80		120			200			350	450			inf
CMS H->bb																		300		450	650		inf
ATLAS H->bb																		300		450	650	1000	inf

Unfolding method

- Two experiments now produce results with common unfolding method: matrix inversion
 - detector response matrix fully built in the likelihood construction

$$N_i(m_{4\ell}) = \sum_j r_{ij} \cdot (1 + f_i^{\text{nonfid}}) \cdot \sigma_j^{\text{fid}} \cdot \mathcal{P}_i(m_{4\ell}) \cdot \mathcal{L} + N_i^{\text{bkg}}(m_{4\ell})$$

background contribution

Events outside the fiducial region reconstructed in bin i

detector response matrix

 $\frac{\text{number of events in bin i truth matched to an event in bin j}}{\text{truth events in bin j}}$

fiducial XS
$$\sigma_j^{\text{fid}} = \sigma_j \cdot A_j \cdot \mathcal{B}$$

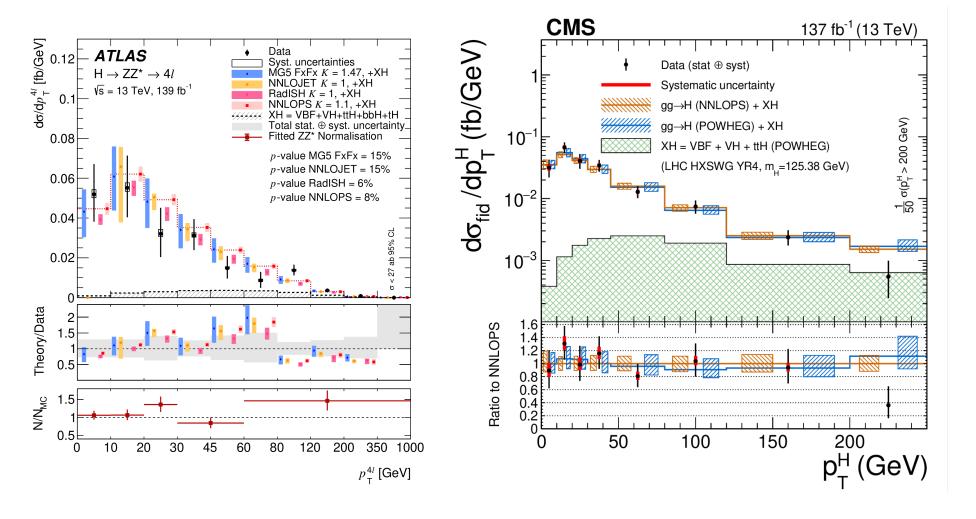
signal shape containing
the fraction of events as a
function of m4l expected
in each reconstruction bin
(taken from MC
simulation)

MC and modelling uncertainties

Need to survey the generators used in each channels by the two collaborations and discuss possible issues

- e.g. in H4l channel, for ggH
 - CMS: POWHEG(reweighted to NNLOPS, NNLO accuracy)
 - ATLAS: NNLOPS

Systematics uncertainties and model dependence:


- (theoretical) systematics that may be common across channels/experiments
- varying of production process composition within experimental uncertainties

Next steps

- Agree on a list of variables to be measured
 - also exact definition, bin boundaries
 - any other proposal from theory side to measure additional variables? (previous proposal)
- Agree on what interpretations to provide
 - SMEFT(sim | @NLO) as a starting point ?
 - additional work/studies to be done
 - $\kappa_b \kappa_c$: new updated predictions from theory would be preferred
- Exchange the workspaces of published results, start exercise
 - check POIs, conventions used in the workspaces, e.g. fractional or absolute cross sections, etc.
 - produce cross checks how close the two experiments
 - •

Back up

Higgs pT

EPJC 80 (2020) 942, EPJC 81 (2021) 488