Introduction Main results

Di-Higgs Production in Extended Higgs Sectors

Duarte Azevedo

In collaboration with: H. Abouabid, A. Arhrib, J. Falaki, P. Ferreira, M. M. Mühlleitner, R. Santos.

Institute for Theoretical Physics (ITP) Institute for Astroparticle Physics (IAP) Karlsruher Institut für Technologie Germany duarte azevedo@kit.edu

The 18th Workshop of the LHC Higgs Working Group

December 1st-3rd, 2021

Overview

Introduction

- Experimental results
- How to enhance di-Higgs production

2 Main results

- Impact of resonant and non-res. searches
- Allowed Yukawa and trilinear couplings
- Benchmarks

3 Conclusions

= 990

Experimental results How to enhance di-Higgs production

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

∃ < n < 0</p>

Introduction

< ロ > < 同 > < 回 > < 回 > < 回 > <

э.

- $\bullet\,$ A scalar particle was discovered in 2012^{1,2} that is so far compatible with the SM Higgs boson...
- ...but we need new physics. Dark matter, baryon asymmetry, neutrino masses, among others. It can be provided by extended scalar sectors.
- Observed channels contain one scalar, thus only *HXX* (*X* some SM particle) can be inferred from signal rates.
- Di-Higgs production allows to peer into the scalar self-couplings, which uncovers the scalar potential and EWSB patterns.
- Di-Higgs production through gluon fusion is dominant at LHC.
- Problem: in the SM there is destructive interference between its box and triangle diagrams.
- BSM physics can in many ways overcome this!

¹Phys. Lett. B 716 (2012) 1-29

²Phys. Lett. B 716 (2012) 30

- How and by how much BSM extended sectors can enhance di-Higgs production.
- Impact of the relevant the. and exp. constraints on BSM di-Higgs signals.
- Benchmark scenarios for BSM pair production:
 - SM-like Higgs pairs.
 - SM-like + non-SM-like Higgs pairs.
- Promising di-scalar exotic channels and cascading scalar decays with multiple SM-like Higgs.

The models:

- R2HDM CP-conserving (h, H, A, H^{\pm})
- C2HDM CP-violation (*H*₁, *H*₂, *H*₃, *H*[±])
- N2HDM Singlet admixture (H_1 , H_2 , H_3 , A, H^{\pm})
- NMSSM SUSY (H₁, H₂, H₃, A₁, A₂, H[±])³

 \rightarrow We considered the \mathbb{Z}_2 symmetric versions (first three models) to inhibit FCNC.

< ロ > < 同 > < 回 > < 回 > < 回 > <

³Capitalization and subscript numbering refer to mass ordering.

Methodology

Main codes: ScannerS⁴ and NMSSMCALC⁵

- Theoretical and experimental constraints.
- We applied di-Higgs constraints manually.

Cross-sections computations:

- Single Higgs rates w/ SusHi⁶ @13TeV@NNLO_QCD.
- Double Higgs rates w/ HPAIR⁷ (and variations):
 - NLO born-improved heavy top-quark mass limit.
 - Scans: 2 * ($\sigma_{\mu\mu}^{LO}$ @14 TeV), approximate QCD correction.
 - K-factor around 1.9 for SM-like Higgs ⁸.

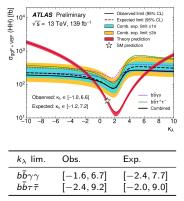
 \rightarrow Benchmarks are presented @NLO.

⁴M. Mühlleitner, M. Sampaio, R. Santos, J. Wittbrodt (2007.02985)

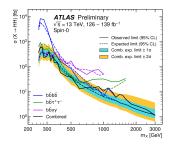
⁵J. Baglio, R. Grober, M. Muhlleitner, D.T. Nhung, H. Rzehak, M. Spira, J. Streicher, K. Walz (1312.4788)

⁶R. V. Harlander, S. Liebler, H. Mantler (1605.03190)

⁷http://tiger.web.psi.ch/proglist.html


⁸Dawson et al. (hep-ph/9806304), Grober et. al. (1705.05314), Dawson et al. (hep-ph/9806304), Buchalla et A D A A B A A B A A B A

 Introduction Main results Conclusions
 Experimental results How to enhance di-Higgs production


 Experimental results ATLAS-CONF-2021-052
 Experimental results

 \rightarrow Analyses are divided into non-resonant (SM) and resonant ones (SM + HSP).

Non-resonant

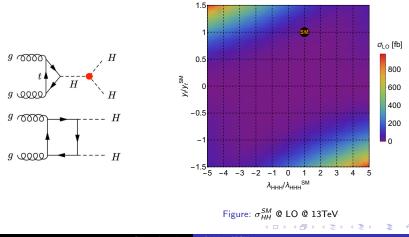
Resonant

- $b\bar{b}\gamma\gamma$ low mass region
- $b\bar{b}\tau\bar{\tau}$ intermediate mass region

< ロ > < 同 > < 三 > < 三 >

- bbbb high mass region
- \rightarrow Non-resonant considers $y_t = y_t^{SM}$ fixed.

 \rightarrow We considered the individual channels limits.


Experimental results How to enhance di-Higgs production

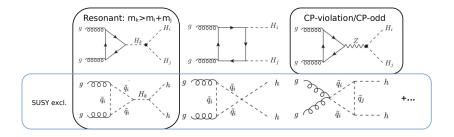
How to enhance di-Higgs production 1/2

SM cross-section recommendations by the LHCXSWG

<u>√s</u>	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
σ _{NNLO FTapprox} [fb]	6.572	9.441	31.05	36.69	139.9	1224

By varying the trilinear and Yukawa couplings

Experimental results How to enhance di-Higgs production


(E)

< D > < A >

э

How to enchance di-Higgs production 2/2

From the existence of additional diagrams

New contributions and interferences will depend on:

- Trilinear couplings (many!).
- Masses.
- Particle widths.

Introduction Impact of resonant and non-res. sear Main results Allowed Yukawa and trilinear coupling Conclusions Benchmarks

Main results (Preliminary)

イロン イヨン イヨン イヨン

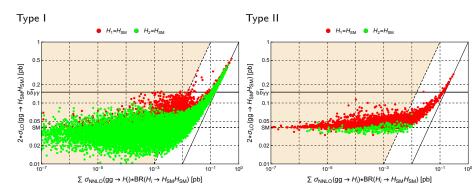
Impact of resonant and non-res. searches Allowed Yukawa and trilinear couplings Benchmarks

イロト イポト イヨト イヨト

Impact of resonant searches

N2HDM-I: H_1 is SM-like

Before resonant bounds After resonant bounds H₁=H_{SM} [HPAIR] ATLAS_CONE_NOTE_2021_030 bbr H₁=H_{SM} [HPAIR] ----- ATLAS-CONF-NOTE-2021-030 bbr T • $H_1=H_{SM} [\sigma_{NNLO}(gg \rightarrow H_2)*BR(H_2 \rightarrow H_1H_1)]$ $H_1=H_{SM}[\sigma_{NNLO}(gg \rightarrow H_2)*BR(H_2 \rightarrow H_1H_1)]$ - - - ATLAS-CONE-NOTE-2021-035 bbbb - - - ATLAS-CONE-NOTE-2021-035 bbbb $2*\sigma_{LO}(99 \rightarrow H_{SM}H_{SM})$ [pp] $2*\sigma_{LO}(gg \rightarrow H_{SM}H_{SM})$ [pb] ٥ 0.1 0.05 0.05 SM 0.01 500 1500 2000 2500 3000 500 1000 1500 2000 2500 1000 3000 m_{H2} [GeV] m_{H2} [GeV]

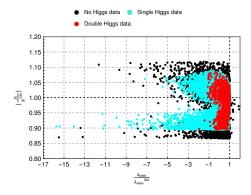

- Resonant searches constrain $\sigma(gg \rightarrow H_i) * BR(H_i \rightarrow H_{SM}H_{SM})$
- Resonances can have $\Gamma(H_i)/m_i > 5\% \rightarrow NWA$ is not valid.

Impact of resonant and non-res. searches Allowed Yukawa and trilinear couplings Benchmarks

< < >> < <</>

Impact of non-resonant searches

N2HDM


- For the largest XS, very good correlation between resonant and full result.
- Defined the non-resonant region as: $\sigma_{HH}^{\text{full}} > 10 * \sigma_{HH}^{\text{res}}$ (shaded area).
- Leading non-resonant constraint is $b\bar{b}\gamma\gamma$: $\sigma_{HH}^{\text{non-res}} < 4.1 * \sigma_{HH}^{\text{SM}}$.

Main results

Impact of resonant and non-res, searches

Impact of all searches

N2HDM-I: H₁ is SM-like

- Single Higgs data constrains the Yukawas.
- Additional bound $\lambda_{iik} < \lambda_{HHH}^{SM}(m_H = 700 \text{ GeV}) = 5975.6 \text{ GeV}$ cuts lower branch.
- Di-Higgs data is starting to constrain trilinears.

イロト イボト イヨト イヨト

æ

Intro	
Main	results
Conc	lucione

Allowed Yukawa and trilinear couplings

	R2HDM		C2H	IDM
	$y_{t,H_{SM}}^{R2HDM}/y_{t,H}$	$\lambda_{3H_{\rm SM}}^{\rm R2HDM}/\lambda_{3H}$	$y_{t,H_{SM}}^{C2HDM}/y_{t,H}$	$\lambda_{3H_{\rm SM}}^{\rm C2HDM}/\lambda_{3H}$
light T1	0.8931.072	-0.0961.076	0.8981.035	-0.0351.227
medium T1	n.a.	n.a.	0.8891.028	0.2511.172
heavy T1	0.9461.054	0.4811.027	0.8931.019	0.6711.229
light T2	0.9511.042	0.6921.000	0.9561.046	0.0960.999
medium T2	n.a.	n.a.	-	-
heavy T2	-	-	-	-
[1	
	N2H	HDM	NM	SSM
	N2H y _{t,HSM} /y _{t,H}		$\frac{\text{NM}}{y_{t,H_{\text{SM}}}^{\text{NMSSM}}/y_{t,H}}$	$\frac{\lambda_{3H_{SM}}^{NMSSM}}{\lambda_{3H_{SM}}}/\lambda_{3H}}$
light T1				
light T1 medium T1	$y_{t,H_{SM}}^{N2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m N2HDM}/\lambda_{3H}$	$y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$	$\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$
0	$y_{t,H_{SM}}^{N2HDM}/y_{t,H}$ 0.8951.086	$\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.9661.004	$y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a.	$\lambda_{3H_{\rm SM}}^{ m NMSSM}/\lambda_{3H}$ n.a.
medium T1	y _{t,H_{SM}} /y _{t,H} 0.8951.086 0.8741.058	$\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.9661.004 -1.2471.168	$y_{t,H_{\rm SM}}^{\rm NMSSM}/y_{t,H}$ n.a. n.a.	$\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a.
medium T1 heavy T1	у _{t,HSM} /у _{t,H} 0.8951.086 0.8741.058 0.8901.033	$\lambda_{3H_{SM}}^{N2HDM}/\lambda_{3H}$ -1.9661.004 -1.2471.168 0.7701.149	y <mark>NMSSM</mark> /y _{t,H} n.a. n.a. n.a.	$\lambda_{3H_{\rm SM}}^{\rm NMSSM}/\lambda_{3H}$ n.a. n.a. n.a.

- Values obtained with blind parameter scans, take them with a grain of salt.
- Bound $m_{H^+} > 800$ GeV on T2 models⁹, eliminates all $H_3 \equiv H_{SM}$ points.
- Several scenarios with $\lambda_{3H} = 0$ allowed.

⁹M. Misiak, A. Rehman, M. Steinhauser (2002.01548)

イロト 不得 トイヨト イヨト

= nar

H_{SM}H_{SM} production benchmarks

All rates 2*LO! [fb]

Non-resonant

Resonant

	$ $ H_1	H_2	H_3			H_1	H_2
R2HDM-I	93	50	n.a.	-	R2HDM-I	562	n.a.
R2HDM-II	61	_	n.a.		R2HDM-II	83.2	n.a.
C2HDM-I	99	43	35		C2HDM-I	839	48.68
C2HDM-II	78	_	_		C2HDM-II	145.86	-
N2HDM-I	154	98.15	45.92	-	N2HDM-I	533	425
N2HDM-II	113.94	49.71	_		N2HDM-II	295	66
NMSSM	75.30	66.95	-	-	NMSSM	202	67

- Non-resonant: rates can be up to 4 times the SM expectation.
- Resonant: rates can be up to 20 times the expectation.

Main results	
Conclusions	

Benchmark for resonant production N2HDM-I

\rightarrow Input values:

m_{H_1} [GeV]	<i>m</i> _{<i>H</i>₂} [GeV]	<i>m</i> _{<i>H</i>3} [GeV]	m_A [GeV]	$m_{H^{\pm}}$ [GeV]	aneta
125.09	277.06	298.08	257.65	272.55	3.725
α_1	α2	α3	vs [GeV]	$m_{12}^2 [\text{GeV}^2]$	
1.297	0.293	-0.111	2448	18000	

 \rightarrow Branching ratios:

 $\begin{array}{ll} \mathsf{BR}(H_2 \to H_1 H_1) = 0.342, & \mathsf{BR}(H_2 \to WW) & = 0.424, & \mathsf{BR}(H_2 \to ZZ) = 0.185 \\ \mathsf{BR}(H_3 \to H_1 H_1) = 0.299, & \mathsf{BR}(H_3 \to WW) & = 0.485, & \mathsf{BR}(H_3 \to ZZ) = 0.215 \\ \mathsf{BR}(A \to bb) = 0.278, & \mathsf{BR}(A \to ZH_1) & = 0.0927, & \mathsf{BR}(H^{\pm} \to tb) = 0.998 \\ \end{array}$

\rightarrow Production rates:

 $\sigma(H_2) \times BR(H_2 \to H_1H_1) = 1.046 \text{ pb} \times 0.342 = 357 \text{ fb}$ $\sigma(H_3) \times BR(H_3 \to H_1H_1) = 0.650 \text{ pb} \times 0.299 = 194 \text{ fb}$

(2)

$2 * \sigma_{H_1H_1}^{LO}$ [pb]	$\Gamma_{H_1}^{\text{tot}}$ [GeV]	$\Gamma_{H_2}^{\text{tot}}$ [GeV]	$\Gamma_{H_3}^{\text{tot}}$ [GeV]	Γ_A^{tot} [GeV]	$\Gamma_{H^{\pm}}^{\text{tot}}$ [GeV]	$\lambda_{3H_1}/\lambda_{3H}^{\rm SM}$
533.4	$3.717 \ 10^{-3}$	0.018	0.931	0.001	0.491	0.878

• Two clear peaks in invariant mass distribution.

• All $H_{SM}H_{SM}$ production BP are given in the paper to come.

Introd	luction
Main	results
Conc	lusions

Mixed di-Higgs production into 4b final state

 $\label{eq:states} \begin{array}{||c|||} \hline \mbox{All rates 2*LO! [fb]} \\ \mbox{gg} \rightarrow \mbox{H}_{SM}\mbox{H}_{i}/\mbox{A}_{i} \rightarrow \mbox{b} \mbox{b} \mbox{b} \end{array}$

Model	Mixed Higgs State	Rate [fb]
R2HDM-I	$AH_1 (\equiv H_{SM})$	46
	$H_1H_2 (\equiv H_{\rm SM})$	35
C2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	19
	$H_1H_2 (\equiv H_{\rm SM})$	14
	$H_1H_3 (\equiv H_{SM})$	11
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	105
	$AH_1 (\equiv H_{SM})$	808
	$H_1H_2(\equiv H_{\rm SM})$	2017
	$AH_2 (\equiv H_{SM})$	271
	$H_1H_3 (\equiv H_{\rm SM})$	44
	$H_2H_3 (\equiv H_{\rm SM})$	32
	$AH_3 (\equiv H_{SM})$	19
NMSSM	$A_1H_1(\equiv H_{\rm SM})$	209
	$H_2H_1(\equiv H_{\rm SM})$	45
	$A_1H_2(\equiv H_{\rm SM})$	42
	$H_1H_2(\equiv H_{\rm SM})$	62

• Details on these points can be provided on request.

∃ 990

イロト イヨト イヨト -

Impact of resonant and non-res. searches Allowed Yukawa and trilinear couplings Benchmarks

イロト 不得 トイヨト イヨト

= nav

Mixed di-Higgs production and cascade decay into 6b final state

All rates 2*LO! [fb]

 $gg \to H_{SM}H_i \to H_jH_kH_l \to b\bar{b}b\bar{b}b\bar{b}$

Model	Mixed Higgs State	Rate [fb]
N2HDM-I	$H_2H_3(\equiv H_{\mathrm{SM}}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	15
	$H_2H_1(\equiv H_{\mathrm{SM}}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	41
	$H_2H_1(\equiv H_{\mathrm{SM}}) ightarrow AA(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	33
	$H_1H_2(\equiv H_{SM}) ightarrow (bar{b})H_1H_1 ightarrow (bar{b})(bar{b})(bar{b})$	106
	$H_3H_2(\equiv H_{\rm SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	10
	$H_3H_2(\equiv H_{\mathrm{SM}}) ightarrow H_1H_2(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	7
NMSSM	$H_2H_1(\equiv H_{SM}) ightarrow H_1H_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	12
	$H_2H_1(\equiv H_{ ext{SM}}) ightarrow A_1A_1(bar{b}) ightarrow (bar{b})(bar{b})(bar{b})$	38

• Details on these points can be provided on request.

Conclusions

メロト メロト メヨト メヨト

∃ < n < 0</p>

Conclusions

- Resonant searches already constrain all our models.
- We need both resonant and non-resonant searches to constrain the SM-like trilinear.
- Limits are beginning to constrain trilinears on the N2HDM.
- Experimental input for benchmarks is more than welcome!

 \rightarrow We provide on request benchmarks for di-scalars production (inc. non-SM-like) and cascading scalar processes (multiple scalars final state).

Thank you!

イロト 不得 トイヨト イヨト

э.