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Precision is crucial part of LHC programme: e.g. establishing the Higgs sector
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Figure 1. Projected uncertainties on ki, combining
ATLAS and CMS: total (grey box), statistical (blue),
experimental (green) and theory (red). From Ref. [2].

These coupling measurements assume the absence of sizable
additional contributions to GH . As recently suggested, the patterns
of quantum interference between background and Higgs-mediated
production of photon pairs or four leptons are sensitive to GH .
Measuring the off-shell four-fermion final states, and assuming
the Higgs couplings to gluons and ZZ evolve off-shell as in the
SM, the HL-LHC will extract GH with a 20% precision at 68% CL.
Furthermore, combining all Higgs channels, and with the sole
assumption that the couplings to vector bosons are not larger than
the SM ones (kV  1), will constrain GH with a 5% precision at
95% CL. Invisible Higgs boson decays will be searched for at
HL-LHC in all production channels, VBF being the most sensitive.
The combination of ATLAS and CMS Higgs boson coupling mea-
surements will set an upper limit on the Higgs invisible branching
ratio of 2.5%, at the 95% CL. The precision reach in the mea-
surements of ratios will be at the percent level, with particularly
interesting measurements of kg/kZ, which serves as a probe of
new physics entering the H ! gg loop, can be measured with an
uncertainty of 1.4%, and kt/kg, which serves as probe of new
physics entering the gg ! H loop, with a precision of 3.4%.

A summary of the limits obtained on first and second gen-
eration quarks from a variety of observables is given in Fig. 2
(left). It includes: (i) HL-LHC projections for exclusive decays of
the Higgs into quarkonia; (ii) constraints from fits to differential
cross sections of kinematic observables (in particular pT); (iii)
constraints on the total width GH relying on different assumptions
(the examples given in the Fig. 2 (left) correspond to a projected limit of 200 MeV on the total width from the mass shift
from the interference in the diphoton channel between signal and continuous background and the constraint at 68% CL on the
total width from off-shell couplings measurements of 20%); (iv) a global fit of Higgs production cross sections (yielding the
constraint of 5% on the width mentioned herein); and (v) the direct search for Higgs decays to cc using inclusive charm tagging
techniques. Assuming SM couplings, the latter is expected to lead to the most stringent upper limit of kc / 2. A combination of
ATLAS, CMS and LHCb results would further improve this constraint to kc / 1.

The Run 2 experience in searches for Higgs pair production led to a reappraisal of the HL-LHC sensitivity, including several
channels, some of which were not considered in previous projections: 2b2g , 2b2t , 4b, 2bWW, 2bZZ. Assuming the SM Higgs

Figure 2. Left: Summary of the projected HL-LHC limits on the quark Yukawa couplings. Right: Summary of constraints on
the SMEFT operators considered. The shaded bounds arise from a global fit of all operators, those assuming the existence of a
single operator are labeled as "exclusive". From Ref. [2].
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Over the next 15 years 
Today’s ~8% (on H→γγ)  

→ ~2% at HL-LHC

We wouldn’t consider QED 
established if it had only been tested 

at O(10%) accuracy

HL-LHC
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Starting point for any hadron-collider analysis: acceptance (fiducial) cuts

E.g. ATLAS/CMS  cuts 

➤ Higher-  photon:  (ATLAS) or  (CMS) 

➤ Lower-  photon:  

➤ Both photons: additional rapidity and isolation cuts 

Essential for good reconstruction of the photons and for rejecting large low-  
backgrounds. 

Theory-experiment comparisons with identical “fiducial” cuts often considered 
the Gold Standard of collider physics

H → γγ

pt pt,γ > 0.35mγγ mγγ /3

pt pt,γ > 0.25mγγ

pt
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Recent surprise: H→γγ fiducial N3LO σ uncertainties ~2  greater than inclusive N3LO σ uncertaities×

4
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Chen, Gehrmann, Glover, Huss, Mistlberger & Pelloni, 2102.07607

https://arxiv.org/abs/2102.07607
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FIG. 2. Comparison between inclusive (left) and fiducial (right) predictions for the rapidity distribution of the Higgs boson up
to N3LO. Predictions are shown at LO (grey), NLO (green), NNLO (blue), N3LO (red), and for the NNLO prediction re-scaled
by the inclusive KN3LO-factor (orange).

channel at N3LO. The fully di↵erential prediction is as-
sembled according to Eq. (1), which requires:

1. The inclusive calculation at N3LO for the Higgs ra-
pidity distribution yH as computed in Ref. [20] and
implemented in the RapidiX library. This result is
based on techniques developed in Refs. [38, 39] and
is given by analytic formulae for the partonic rapid-
ity distribution computed by means of a threshold
expansion. We supplement this result by exploiting
the fact that the Higgs boson decays isotropically
in its rest frame to generate the inclusive N3LO cal-
culation di↵erential in the Higgs boson decay prod-
ucts.

2. The fully di↵erential NNLO calculation for the
H+jet process. This has been computed in Ref. [29]
using the antenna subtraction method [22, 39] and
is available within the parton-level Monte Carlo
generator NNLOJET.

We have implemented the P2B method for color-neutral
final states within the NNLOJET framework together
with an interface to the RapidiX library to access the
inclusive part of the calculation.

For our phenomenological results, we restrict ourselves
to the decay of the Higgs boson into a pair of photons
and closely follow the corresponding 13 TeV ATLAS
measurement [40] with the following fiducial cuts

p�1

T > 0.35⇥m�� , p�2

T > 0.25⇥m�� , (7)

|⌘� | < 2.37 excluding 1.37 < |⌘� | < 1.52,

where �1 and �2 respectively denote the leading and sub-
leading photon with m�� ⌘ MH = 125 GeV the invari-
ant mass of the photon-pair system. For each photon,
an additional isolation requirement is imposed where the
scalar sum of partons with pT > 1 GeV within a cone of
�R = 0.2 around the photon has to be less than 5% of the
pT of the photon. Note that this setup induces a highly
non-trivial interplay between the final-state photons and
QCD emissions, requiring a fully di↵erential description
of the process. Throughout this letter, we work in the
narrow width approximation to combine the production
and decay of the Higgs boson. To derive numerical pre-
dictions we use PDF4LHC15_nnlo_100 [41] parton distri-
bution functions and choose the value of the top quark
mass in the modified minimal subtraction scheme to be
mt(mt) = 162.7 GeV.

Figure 1 compares predictions for the fiducial rapidity
distribution of the Higgs boson yH based on two di↵er-
ent methods. This comparison serves as the validation
of the P2B implementation up to NNLO against an in-
dependent calculation based on the antenna subtraction
method. The lower panels in Fig. 1 show the ratio of the
two calculations, where the filled band and the error bars
correspond to the uncertainty estimates of the Monte
Carlo integration of the antenna- and P2B-prediction,
respectively. The ratios shown in the bottom two panels
reveal agreement within numerical uncertainties between
the two calculations at the per-mille and sub-per-cent
level for the coe�cients at NLO and NNLO, respectively.

Figure 2 compares the inclusive rapidity distribution of
the Higgs boson to the fiducial rapidity distribution of the
di-photon pair. It was already noted in Refs. [20, 21] that

Chen, Gehrmann, Glover, Huss, Mistlberger & Pelloni, 2102.07607

“Gold standard” fiducial cross 
section gives much worse 

prediction 

Why?  
And can this be solved?

https://arxiv.org/abs/2102.07607
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Standard pt,γ cuts →  Higgs pt dependence of acceptance
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HHiggs with zero 
transverse mom.

γ+

❌ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Fails cuts

HHiggs with non-zero 
transverse mom.

γ+ ✅ 0.35pt,+ > mH

✅ 0.25pt,− > mHγ–

Passes cuts

Numbers are for ATLAS H→ γγ pt cuts, CMS cuts are similar

Let us place the Higgs, of mass mh, at zero rapidity, yh = 1

2
ln E+pz

E�pz
= 0. When the

Higgs boson has transverse momentum pt,h, we can parameterise the momenta of the two

photons (labelled + and �) as a function of polar and azimuthal angles ✓ and �,

p±(pt,h, ✓,�) =
1

2

n
±

q
m2

h + p
2
t,h

sin ✓ cos�+ pt,h , ±mh sin ✓ sin� , ±mh cos ✓ ,
q
m2

h + p
2
t,h

± pt,h sin ✓ cos�
o
, (2.1)

where the components are given in the order x, y, z, E, the beams are along the ±z

directions and, without loss of generality, we have taken the Higgs boson transverse mo-

mentum to be along the x direction. In this parametrisation, ✓ and � are simply the usual

Collins–Soper angles [40]. When discussing pt cuts, it is su�cient to consider the domain

0  ✓ 
⇡

2
, �

⇡

2
 � 

⇡

2
, (2.2)

where we have pt,+ � pt,�. We will refer to the higher (lower)-pt photon as the harder

(softer) one. In this domain, an identical (“symmetric”) transverse momentum cut on both

photons, pt,+, pt,� � pt,cut, reduces to a requirement on the softer photon, pt,� � pt,cut.

For other regions of ✓ and �, the argument would remain identical, simply taking care as

to which of the two photons has the smaller transverse momentum.

For a given pt,h, the fraction f(pt,h) of Higgs boson decays where both photons pass

the cut is given by

f(pt,h) =

Z
⇡/2

�⇡/2

d�

⇡

Z
⇡/2

0

sin ✓d✓⇥(pt,� > pt,cut) . (2.3)

We can perform a simple integration over phase space, independently of the Higgs produc-

tion matrix element, because of the spin-0 nature of the Higgs boson. To evaluate f(pt,h),

it is convenient to work in the small-pt,h limit, where we have

pt,±(pt,h, ✓,�) =
mh

2
sin ✓ ±

1

2
pt,h cos�+

p
2
t,h

4mh

�
sin ✓ cos2 �+ csc ✓ sin2 �

�
+O3 , (2.4)

where the notation On is a shorthand that we introduce to indicate that we neglect terms

p
n
t,h and higher (and, later, the n

th power of any other factor in which we expand). In

Eq. (2.4), we have retained terms up to order p
2
t,h/m

2
h because we will make use of the

second-order term later. However, to keep the rest of this section as simple as possible, we

will now work with just the first two terms, and the requirement pt,� > pt,cut translates to

sin ✓ >
2pt,cut
mh

+ cos�
pt,h

mh

+O2 , (2.5)

or equivalently

cos ✓ < f0 �
2

f0

pt,cut

mh

cos�
pt,h

mh

+O2 , f0 =

s

1�
4p2

t,cut

m2
h

. (2.6)

– 5 –

Expect acceptance to increase with increasing pt,H
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Linear ptH dependence of H acceptance ≡ f(ptH)
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resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��

– 2 –
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See e.g. Frixione & Ridolfi ‘97 
Ebert & Tackmann ’19 

idem + Michel & Stewart ‘20 
Alekhin et al ’20

effect of  cut sets in at  pt,− 0.1mH

 and  are coefficients whose values 
depend on the cuts
f0 f1
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perturbative series for fiducial cross sections

8

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��

– 2 –
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acceptance and Higgs  distributionpt
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Resummed 
results

Behaviour of perturbative series in various log approximations

➤ At DL & LL (DL+running coupling) factorial divergence sets in from first orders 

➤ Poor behaviour of N3LL is qualitatively similar to that seen by Billis et al ‘21 

➤ Theoretically similar to a power-suppressed ambiguity ~  
[inclusive cross sections expected to have ]

(ΛQCD/mH)0.205

Λ2/m2

9

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, μ=mH/2

numbers we will take ✏ ! 0, however we will also plot the ✏ dependence of the result to

gauge the e↵ect of a pt,h cuto↵ in a projection-to-Born type [53] subtraction approach for

perturbative calculations, as used in Ref. [11]. (In practice, such calculations impose a

cuto↵ m
2

min
on the invariant mass of parton pairs, and a cut m2

min
. ✏

2 is required to fully

cover transverse momenta down to a scale ✏.)

For asymmetric cuts with the ATLAS thresholds of pt,+ > 0.35mh and pt,� > 0.25mh

(using not just the f1 part of the acceptance, but its full structure), we obtain the following

results for the acceptances for each of the perturbative models,

�asym � f0�inc

�0f0
' 0.15↵s � 0.29↵2

s
+ 0.71↵3

s
� 2.39↵4

s
+ 10.31↵5

s
+ . . . ' 0.06 @DL,

' 0.15↵s � 0.23↵2
s
+ 0.44↵3

s
� 1.15↵4

s
+ 3.86↵5

s
+ . . . ' 0.06 @LL,

' 0.18↵s � 0.15↵2
s
+ 0.29↵3

s
+ . . . ' 0.10 @NNLL,

' 0.18↵s � 0.15↵2
s
+ 0.31↵3

s
+ . . . ' 0.12 @N3LL.

(2.23)

In these results, the ↵n
s subscript indicates that the corresponding term is the ↵n

s contribu-

tion to the result, while the right-hand side of the equality corresponds to the acceptance

as determined from the resummation (in the case of the LL result, we stop the integration

at the Landau pole). The DL and LL results clearly show how the series start to diverge

towards higher orders. In the LL case, the terms grow a little more slowly, and numerically

fitting the structure of the series to high orders leads to the conclusion that (for nf = 5) the

smallest term in the series scales as (⇤/Q)0.205 rather than the (⇤/Q)23/144 ' (⇤/Q)0.160

seen at DL level. The investigations reported in Appendix C suggest that the (⇤/Q)0.205

scaling may be robust with respect to b-space versus pt space complications, as well as to

other subleading e↵ects.

Next, we examine the NNLL and N3LL results in Eq. (2.23). The all-order results are

twice as large in the NNLL and N3LL cases as compared to the DL and LL cases, which is

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect, for example by increasing the width of

the resummed scale variation band). The pattern of ✏-dependence in Fig. 3 confirms the

expectation from Eq. (2.20) that the fixed-order result is highly sensitive to unphysically

low pt,h values.8

8One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

– 13 –
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Sensitivity to low Higgs pt (and also scale bands): standard cuts

10Figure 3: The N3LL resummed result and its truncation at N3LO for the fiducial cor-

rections to the Higgs cross section, as defined in Eq. (2.22), for asymmetric pt,� cuts,

pt,+ > 0.35mh and pt,� > 0.25mh. The results are shown as a function of ✏, the mini-

mum Higgs pt used in the integration (conceptually analogous to a technical cuto↵ in a

projection-to-Born fixed-order calculation). The bands are the result of varying renormali-

sation and factorisation scales by a factor of two around mh/2. The N3LL distribution and

expansion used to obtain these results were kindly supplied by the authors of the RadISH

framework [44].

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect). The pattern of ✏-dependence in Fig. 3

confirms the expectation from Eq. (2.20) that the fixed-order result is highly sensitive to

unphysically low pt,h values.7

One may ask whether a badly divergent perturbative series for a fiducial cross section

is a problem: after all, there are various ways of evaluating the fiducial cross section via

the matching of resummations and fixed order, including the pt,h dependence acceptance

7One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

truncated result that is much closer to the full N3LL result, and with a reduced scale uncertainty.
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➤ fixed-order result very 
sensitive to minimum  
value explored in phase-
space integration 

➤ only converges once you 
explore down to 

 

➤ i.e. extremely difficult to get 
reliable fixed-order result 
and once you have it, it is of 
dubious physical meaning

pt,H

pt,H ∼ 1 MeV
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Solution #1: only ever calculate σfid with help of ptH resummation
➤ Billis, Dehnadi, Ebert, Michel & 

Tackmann, 2102.08039, argue you 
should evaluate the fiducial cross 
section only after resummation of 
the ptH distribution. 

➤ For legacy measurements,  
resummation is only viable solution 

➤ Our view: not an ideal solution 

➤ Fiducial σ is a hard cross section 
and shouldn’t need resummation 

➤ losing the ability to use fixed order on its own would be a big blow to the field (e.g. flexibility; 
robustness of seeing fixed-order & resummation agree) 

➤ sensitivity to variation of acceptance at low  → complications (e.g. sensitivity to heavy-quark 
effects in resummation and PDFs — not consistently treated in any N3LL resummation today)

pt,H

11

4

III. THE TOTAL FIDUCIAL CROSS SECTION

If (and only if) the singular distributional structure of
d�(0)

/dqT is known, the qT spectrum can be integrated
to obtain the total cross section. This is the basis of qT
subtractions [44],

� = �
sub(qo↵

T
)+

Z
dqT


d�

dqT
�

d�sub

dqT
✓(qT  q

o↵

T
)

�
. (14)

Here, d�sub = d�(0)[1+O(qT /mH)] contains the singular
terms, with �

sub(qo↵
T

) its distributional integral over qT 

q
o↵

T
, while the term in brackets is numerically integrable.

Taking �
sub

⌘ �
sing, we get

� = �
sing(qo↵

T
) +

Z
q
off
T

0

dqT
d�nons

dqT
+

Z

q
off
T

dqT
d�

dqT
, (15)

which is exactly the integral of Eq. (13). The subtrac-
tions here are di↵erential in qT , where qo↵T ⇠ 10�100GeV
determines the range over which they act and exactly
cancels between all terms.

To integrate d�nons
/dqT in Eq. (15) down to qT = 0,

we parametrize the fixed-order coe�cients in Eq. (12) by
their leading behavior,

qT
d�nons

FO

dqT

����
↵n

s

=
q
2

T

m
2

H

2n�1X

k=0

ak ln
k q

2

T

m
2

H

+ · · · , (16)

and perform a fit to this parameterization, which we then
integrate analytically. To obtain reliable, unbiased fit re-
sults, we must account for the uncertainties in the pa-
rameterization from yet higher-power corrections. We
do so by including additional higher-power coe�cients
as nuisance parameters. In the fiducial case, we include
all O(q3

T
/m

3

H
) coe�cients. The fit procedure is an ex-

tension of the one described in Refs. [103, 104]. It has
been validated extensively, and more details will be given
elsewhere. As a benchmark, we correctly reproduce the
↵s (↵2

s
) coe�cients of the total inclusive cross section to

better than 10�5 (10�4) relative precision.
At N3LO, we use existing NNLOjet results [41, 42] to

get nonsingular data for 0.74GeV (4GeV)  qT  q
o↵

T

for inclusive log bins (for inclusive and fiducial linear
bins). While these data are not yet precise enough to-
wards small qT to give a stable fit on their own, we ex-
ploit that in the inclusive case, the known ↵

3
s
coe�cient

of the total inclusive cross section [25, 105] provides a
su�ciently strong additional constraint to obtain a reli-
able fit. In the fiducial case, we exploit that the inclusive
and fiducial ak arise from the same Y -dependent coef-
ficient functions integrated either inclusively or against
A(0, Y ;⇥). At NLO and NNLO, their ratios are between
0.4 to 0.55. At N3LO, we thus perform a simultaneous
fit to inclusive and fiducial data, using this range as a
1� constraint on the ratio of fiducial and inclusive ak.

FIG. 2. Fiducial and nonsingular power corrections integrated
up to qT  q

cut
T . The yellow band shows �nons from the fit.
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20
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24

26

28

30

FIG. 3. Total fiducial gg ! H ! �� cross section at fixed or-
der and including resummation, where �resum ⌘ �qT ��' �
�match, compared to preliminary ATLAS measurements [26].

This yields a stable fit, with an acceptable ⇠ 0.1 pb un-
certainty for the fiducial nonsingular integral (�nons).

The often-used qT slicing approach amounts to taking
q
o↵

T
! q

cut

T
⇠ 1GeV and simply dropping the power cor-

rections below q
cut

T
. The nonsingular and fiducial power

corrections are shown in Fig. 2. The latter are huge at
↵
3
s
, and even at ↵

2
s
only become really negligible below

q
cut

T
<
⇠ 10�2 GeV. This is why it is critical for us to

include them in the subtractions (and to resum them).
The remaining nonsingular corrections at ↵

3
s
are about

ten times larger than at ↵
2
s
, and at q

cut

T
= 1 � 5GeV

still contribute 5 � 10% of the total ↵3
s
coe�cient. To-

gether with the current precision of the nonsingular data,
this makes the above di↵erential subtraction procedure
essential to our results.

Evaluating Eq. (15) either at fixed order or including
resummation, we obtain our final results for the total
fiducial cross section presented in Fig. 3. The poor con-
vergence at fixed order is largely due to the fiducial power

Billis, Dehnadi, Ebert, Michel & Tackmann, 2102.08039 

Resummation

https://arxiv.org/abs/2102.08039
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Solution #2a: for future measurements, make simple changes to the cuts

12

one may place an explicit cut on the softer photon, pt,� > pt,cut��. The analysis is similar

to that for the asymmetric cut in section 2.2 and with the condition � ⌧ mh, the result

that emerges is that Eq. (3.6) is replaced by

f
sum(pt,h) = f0 + f

sum

2 ·
p
2
t,h

m2
h

+O4 �
4pt,cut
⇡mhf0

�(pt,h, 2�)

mh

(1 +O2) . (3.7)

Note the same function � that appeared in Eq. (2.17), but now as �(pt,h, 2�) instead

of �(pt,h,�), so that the transition intervenes for pt,h > 2�, i.e. at twice the value that

occurred with standard asymmetric cuts. It is simple to understand why: to have pt,� =

pt,cut � � and pt,+ + pt,� = 2pt,cut, then it is necessary to have pt,+ � pt,� = 2�, which

implies pt,h � 2�.

In general, when we refer to sum cuts, we will always understand them to involve an

additional requirement on the pt of the softer decay product, and similarly for all the other

cuts that we discuss below.

3.2 Product cuts

Another simple solution to engineering an acceptance with a quadratic dependence on pt,h

is to consider the (square-root) of the product of the two photon transverse momenta

pt,prod(pt,h, ✓,�) =
p
pt,+pt,� =

mh

2
sin ✓ +

p
2
t,h

4mh

sin2 �� cos2 ✓ cos2 �

sin ✓
+O4 . (3.8)

Again, the fact that pt,prod has no linear dependence on pt,h will have the consequence

that a cut pt,prod > pt,cut will have an acceptance with only quadratic dependence on pt,h.

Specifically, the acceptance is given by

f
prod(pt,h) = f0 + f

prod

2

✓
pt,h

mh

◆
2

+O4 , f
prod

2
=

p
2
t,cut

m2
hf0

. (3.9)

The coe�cient of the quadratic dependence, fprod

2
, is somewhat smaller than with sum

cuts: for example, for pt,cut = 0.35mh, we have f
prod

2
/f0 ' 0.24, i.e. about 3 times smaller

than f
sum

2
/f0.

As in the previous subsection, a cut just on pt,prod may not be su�cient experimentally,

since the constraint it places on the softer photon is rather weak. However, it is once again

possible to combine a pt,prod cut with a cut on the softer photon, pt,� > pt,cut ��, and for

small � one obtains a result structurally very similar to Eq. (3.7):

f
prod(pt,h) = f0 + f

prod

2

✓
pt,h

mh

◆
2

+O4 �
4pt,cut
⇡mhf0

�(pt,h, 2�+O2)

mh

(1 +O2) . (3.10)

In particular, for small pt,h one obtains the same acceptance as without the pt,� cut, and the

transition for pt,h & 2� has the same form at first order in pt,h/mh. One small di↵erence is

that the transition is not exactly at 2�, but rather slightly higher, at�(1+1/(1��/pt,cut)).

– 16 –

➤ Simplest option is to replace the cut on the leading photon with a cut on the 
product of the two photon ’s 

➤ E.g.  (and still keep softer photon cut ) 

➤ The product has no linear dependence on  

[Several other options are possible, but this  
combines simplicity and good performance]

pt

pt,γ+ × pt,γ− > (0.35mH)2 pt,γ− > 0.25mH

pt,H



2-body cuts, Snowmass Energy Frontier WorkshopGavin P. Salam

Replace cut on leading photon → cut on product of photon pt’s

13
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NB: the cut on the softer photon is still maintained
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Replace cut on leading photon → cut on product of photon pt’s

13
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Using product cuts dampens the factorial divergence
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NB: the cut on the softer photon is still maintained
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Resummed 
results

Behaviour of perturbative series with product cuts

➤ Factorial growth of series strongly suppressed 

➤ N3LO truncation agrees well with all-order result 

➤ Per mil agreement between fixed-order and resummation gives confidence that all 
is under control

14

Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, μ=mH/2

trated with the following results for the perturbative series, first for the sum cuts,

�sum � f0�inc

�0f0
' 0.013↵s � 0.007↵2

s
+ 0.005↵3

s
� 0.004↵4

s
+ 0.004↵5

s
+ . . . ' 0.009 @DL,

' 0.013↵s � 0.005↵2
s
+ 0.001↵3

s
� 0.001↵4

s
+ 0.000↵5

s
+ . . . ' 0.010 @LL,

' 0.016↵s + 0.007↵2
s
� 0.004↵3

s
+ . . . ' 0.019 @NNLL,

' 0.016↵s + 0.007↵2
s
� 0.001↵3

s
+ . . . ' 0.021 @N3LL,

(3.13)

and next for product cuts,

�prod � f0�inc

�0f0
' 0.005↵s � 0.002↵2

s
+ 0.002↵3

s
� 0.001↵4

s
+ 0.001↵5

s
+ . . . ' 0.003 @DL,

' 0.005↵s � 0.002↵2
s
+ 0.000↵3

s
� 0.000↵4

s
+ 0.000↵5

s
+ . . . ' 0.003 @LL,

' 0.005↵s + 0.002↵2
s
� 0.001↵3

s
+ . . . ' 0.005 @NNLL,

' 0.005↵s + 0.002↵2
s
� 0.001↵3

s
+ . . . ' 0.006 @N3LL.

(3.14)

The improvement in convergence relative to the corresponding results for asymmetric cuts,

Eq. (2.23) is striking.

Fig. 5, which is to be compared to its analogue for asymmetric cuts, i.e. Fig. 3, shows

the sensitivity to the infrared cuto↵ in Eq. (2.22), as well as the impact of scale variation.

N3LO (from N3LL) and the full N3LL resummation now agree well and the N3LO result

is much less sensitive to the minimum pt,h in the integration, converging at a few GeV,

rather than at MeV scales for asymmetric cuts. These are precisely the features that we had

anticipated in the introduction to this section. Note also that the residual scale uncertainty

is now essentially negligible (at least by today’s standards for Higgs physics), and that the

overall size of the fiducial acceptance correction is much smaller than for asymmetric cuts.

Note that in Eqs. (3.13) and (3.14), at N3LL the coe�cient of the ↵2
s term is now positive,

whereas it is negative at DL and LL. The most likely explanation for the change of sign

is that it is related to the interplay between the acceptance cuts and the large (positive)

NLO K-factor for Higgs production.

Of the three quadratic cuts discussed so far, overall the best choice appears to be the

product cuts, for several reasons:

1. The coe�cient of the quadratic dependence is small (though staggered cuts give a

smaller coe�cient for 2ptcut/mh < 1/
p
2).

2. The transition point to quasi-linear pt,h dependence, at pt,h ' 2�, is the highest of the

three (sum cuts transition at a similar, though slightly lower value of pt,h). Having a

high transition point is of value because it means that the substantial pt,h dependence

occurs in a region where the perturbative prediction for the pt,h spectrum is more

likely to be reliable, providing confidence in the use of pure fixed-order perturbation

theory to calculate acceptances.

– 19 –
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fixed-order sensitivity to low ptH is gone

➤ fixed-order becomes insensitive to 
 values below a few GeV 

➤ overall size of (non-Born part of) 
fiducial acceptance corrections 
much smaller 

➤ resummation and fixed order agree 
at per-mil level

pt,H

15

Figure 4: Comparison of the pt,h-dependent acceptances for the sum, product and stag-

gered cuts. For the staggered cuts, pt,y+ corresponds to the transverse momentum of the

photon at higher rapidity. As in Fig. 2, the points corresponds to Monte Carlo evaluations

of the acceptances. Lines use series expansions to fourth order and bands (where visible)

show the size of the fourth order term.

Figure 5: The N3LL resummed result and its N3LO truncation, for sum cuts (left) and

product cuts (right), as a function of ✏, the minimum pt,h in Eq. (2.22). Note the di↵erent

scale relative to Fig. 3.

clearly sees the transition to linear pt,h dependence for pt,h & 2� in the case of the sum

and product cuts and for pt,h > � for the staggered cuts.

The perturbative convergence of the acceptance with sum and product cuts is illus-

– 18 –



2-body cuts, Snowmass Energy Frontier WorkshopGavin P. Salam

interplay with ηγ cuts

16

 has non-zero 
linear  derivative 
 at 

f(pt,H, yH)
pt,H

pt,H = 0

fixed-order perturbation 
theory has trouble

ptH derivative of acceptance: white = 0
standard cuts

 
 pt,H 
[GeV] 

Higgs rapidity
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interplay with ηγ cuts

17

 has zero  
linear  derivative 
 at 

f(pt,H, yH)
pt,H

pt,H = 0

fixed-order perturbation 
theory will be fine

NB: at these points Born  and  cuts are 
degenerate. If doing rapidity binning, choose 

bins that are not too narrow  
(e.g. ±0.1 around them)

ηγ pt,γ

ptH derivative of acceptance: white = 0
product cuts

Higgs rapidity
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interplay with ηγ cuts

18

 has zero  
linear  derivative 
 at 

f(pt,H, yH)
pt,H

pt,H = 0

fixed-order perturbation 
theory will be fine

ptH derivative of acceptance: white = 0
product cuts

Higgs rapidity
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Solution #2b: design cuts whose acceptance is independent of ptH (at small ptH)

19

➤ keep standard cuts on 
softer photon pt and on 
photon rapidities 

➤ replace harder-photon 
pt  cut with Collins-
Soper angle cut 
(transverse boost-
invariant) 

➤ selectively loosen CS 
angle cut to keep ptH-
independent 
acceptance as far as 
possible Figure 13: Analogue of Figs. 8 and 9, for the hardness and rapidity compensating boost-

invariant (CBIHR) cuts. The upper panel shows the impact on the pt,h = 0 acceptance of

the raised high-rapidity pt,cs cut that we impose, Eq. (5.12). The lower panel shows the

pt,h derivative of the acceptance (including the raised high-rapidity pt,cs cut), illustrating

that up to pt,h ' 20 GeV the acceptance is independent of pt,h for all Higgs rapidities.

within the assumption that one picks a narrow part of the continuum (e.g. concentrating

on resonant Z production and/or imposing a narrow m`` window), or that hardness cuts

are formulated as fractions of m``. This serves to avoid the additional complications that

come from the interplay between a steeply-falling spectrum and fixed lepton hardness cuts.

We will also ignore contributions from �� ! `
+
`
� (see e.g. Ref. [55]) and other electroweak

contributions [56, 57]. This allows us to adopt the widespread parametrisation of the cross

section as a function of the Drell–Yan exchanged 4-momentum q and the Collins-Soper [40]

angles ✓ and �
20

d�

d4qd cos ✓d�
=

3

16⇡

d�
unpol.

d4q

 
hu(✓,�) +

7X

i=0

Ai(q)hi(✓,�)

!
, (6.1)

20Which coincide with the decay parametrisation in Eq. (2.1), where the + (�) momentum corresponds

to the (anti)lepton.
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details in arXiv:2106.08329 + code at https://github.com/gavinsalam/two-body-cuts

https://arxiv.org/abs/2106.08329
https://github.com/gavinsalam/two-body-cuts
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Solution #3: defiducialise (cf. Glazov 2001.02933 for DY)

20

➤ Option 3a: divide out both  
 and  dependence of 

acceptance from fiducial 
differential cross section 

➤ Option 3b: divide out just  
dependence of acceptance from 
fiducial differential cross 
section (adapted from 
suggestion by referee of paper)

pt,H yH

pt,H

The result for �p is then

�p =
1

2p

1X

n=0

(2n)!

n!

✓
�
2C↵s

⇡p2

◆
n n/2X

`=0

1

`!

n!

(n� 2`)!

(2n� `)!

(2n)!

✓
�
2⇡

3

pb0

C

◆
`

. (C.11)

Next we observe that when n � `,

n!

(n� 2`)!

(2n� `)!

(2n)!
'

n
2`

(2n)`
=

⇣
n

2

⌘
`

, (C.12)

from which we obtain
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which is precisely of the form of Eq. (C.6) with

r = exp

✓
⇡

3

pb0

C

◆
. (C.14)

For p = 1 and C = CA this gives r ' 1.24, which is in the same ballpark as the complete

numerical result given above of r ' 1.28. For p = 1 and C = CF , one finds r ' 1.6, which

is not so close to the observed numerical result of r = 2.1. In both cases, however, we have

made quite a number of approximations, such as taking just the first non-trivial b0 term as

our starting point, Eq. (C.9), so it is perhaps unsurprising that the analysis does not yield

the full structure of the series. Still, we believe that the analysis is su�cient to motivate

the observed structural form of the scaling as written in Eq. (C.6) and observed in Fig. 17.

D Remarks on defiducialisation

An alternative approach to the elimination of artefacts from cuts is to adopt a defiduciali-

sation procedure [33]. In the case of Higgs production and decay, this is particularly simple

and one may write a defiducialised cross section as

�defid =

Z
+y

max
h

�y
max
h

dyh

Z
p
max

t,h

0

dpt,h
d�

fid

dyhdpt,h

1

f(yh, pt,h)
, (D.1a)

⌘

Z
+y

max
h

�y
max
h

dyh

Z
p
max

t,h

0

dpt,h
d�

dyhdpt,h
, (D.1b)

where d�
fid
/dyhdpt,h is the di↵erential cross section with some specific set of fiducial cuts,

and f(yh, pt,h) is the acceptance with those cuts. The meaning of Eq. (D.1a) is that each

event that passes the cuts is binned with a weight 1/f(yh, pt,h). Such an approach e↵ectively

yields a bin of a simplified template cross section [38], as made evident from Eq. (D.1b).

Care is needed with the choice of ymax
h and p

max
t,h so as to avoid regions where the acceptance
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is zero or close to zero. This implies that y
max
h should be kept well away from the upper

limit on the photon acceptance (for example, for a maximum photon pseudorapidity of

2.37, one might choose ymax
h = 2). With cuts that remove slices of (pseudo)rapidity for the

photons, a p
max
t,h restriction may be necessary to avoid the high-pt,h region where one or

other of the photons from the Higgs decay is highly likely to be collimated into the slice.

Alternatively, one may remove the slice regions from the rapidity integral.

To evaluate Eq. (D.1a) in practice, f(yh, pt,h) can be pre-tabulated. If this is considered

too cumbersome, one could instead evaluate

�defid =

Z
+y

max
h

�y
max
h

dyh

Z
p
max

t,h

0

dpt,h

Z
d�cs

d�
fid

dyhdpt,hd�cs

"
1

4

4X

i=1

f(yh, pt,h,�i)

#�1

. (D.2)

This equation is to be interpreted as follows: for each event, one determines yh, pt,h and

the Collins-Soper azimuth �cs. One then evaluates the quantity in square brackets across

the four �i values as given in Eq. (5.8) and uses this to determine the weight when binning

the event. The logic of this approach is that the quantity f(yh, pt,h,�i) can be evaluated

exactly, and relatively e�ciently, with the help of the code supplied with this article. The

sum over four �i values serves to avoid large fluctuations in event weights (for example due

to the region of low �cs values in the right-hand, pt,h = 100 GeV, panel of Fig. 11, where

the non-negotiable pt,� cut causes the acceptance to be very close to zero).

A further variant is to defiducialise just the pt,h dependence. In our view, the simplest

such approach is the following,29

�defid,pt,h =

Z
+y

max
h

�y
max
h

dyh

Z
p
max

t,h

0

dpt,h
d�

fid

dyhdpt,h

f(yh, 0)

f(yh, pt,h)
, (D.3a)
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h

dyh

Z
p
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t,h

0

dpt,h
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dyhdpt,h
f(yh, 0) , (D.3b)

where the weight assigned to each observed event is now f(yh,0)

f(yh,pt,h)
. As with full defiducial-

isation, this may also be adapted to use a weight that is �-dependent.

Note that defiducialisation is a rigorous and straightforward procedure only for scalar

decays. Applications to vector-boson decays (as in the original proposal) encounter the

complication the angular distribution of the decay products depends on the kinematics and

production mechanism of the vector boson in a non-trivial manner. One might consider

exploring an approximate defiducialisation, e.g. based just on the unpolarised acceptance,

however it is not clear to what extent this would be superior to the simple use of product

cuts.
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NB1: some care needed in choice of integration limits, to avoid division by zero (or, for 3a, by small numbers for ) 
NB2: defiducialisation is theoretically robust for a scalar particle (in a way that it is not for DY) 
NB3: code at https://github.com/gavinsalam/two-body-cuts can also help with defiducialisation for Higgs

yH ≳ 2

https://arxiv.org/abs/2001.02933
https://github.com/gavinsalam/two-body-cuts


Gavin P. Salam 2-body cuts, Snowmass Energy Frontier Workshop

Conclusions
➤ Fixed-order perturbation theory can be badly compromised by existing (2-body) cuts 

(→ intriguing questions about asymptotics of QCD perturbative series)  

➤ In simple cases (e.g. H → γγ), can be solved by resummation. But physics will be more robust if we 
can reliably use both fixed-order and resummed+FO results (and both yield similar central values & 
uncertainties)  

➤ A better long-term solution may be to revisit experimental cuts:  

➤ product and boost-invariant cuts give much better perturbative series 

➤ Likely relevant also for other processes (see backup for DY: effects at the 1%-level) 

➤ Alternatively: in Higgs case, you can defiducialise 

➤ Cuts with little ptH dependence (or defiducialisation) may be useful also, e.g., for extrapolating 
measurements to STXS or more inclusive cross sections, with limited dependence on BSM or non-
perturbative effects. 

➤ Needs addressing in future LHC measurements for robust accuracy in Run 3 & HL-LHC
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Linear ptH dependence of H acceptance, f(ptH) →
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resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

a↵ected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses di↵erent transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 ! 1 processes, both inclusively [5–8]

and di↵erential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections di↵erential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H ! �� decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H ! �� decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h

mh

+O

 
p
2
t,h

m2
h

!
. (1.1)

In section 2, concentrating on the H ! �� case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h ! 0 results in a perturbative series for the

fiducial cross section that diverges (�1)n↵n
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of ↵s, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is di↵erent, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (⇤/mh), where ⇤ ⌘ ⇤qcd ⇠ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H ! ��

– 2 –
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 and  are coefficients 
whose values depend values of cuts

f0 f1

effect of  cut sets in at  pt,− 0.1mH

 dependence of acceptance (at 10% level) → 
relating measured cross section and total cross 

section requires info about the  
distribution.

pt,H

pt,H
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Cut Type cuts on small-pt,h dependence fn coe�cient pt,h transition

symmetric pt,� linear +2s0/(⇡f0) none

asymmetric pt,+ linear �2s0/(⇡f0) �

sum 1

2
(pt,� + pt,+) quadratic (1 + s

2

0
)/(4f0) 2�

product
p
pt,� + pt,+ quadratic s

2

0
/(4f0) 2�

staggered pt,1 quadratic s
4

0
/(4f3

0
) �

Collins-Soper pt,cs none — 2�

CBIH pt,cs none — 2
p
2�

rapidity y� quadratic f0s
2

0
/2

Table 1: Summary of the main hardness cuts, the variable they cut on at small pt,h, and

the small-pt,h dependence of the acceptance. For linear cuts fn ⌘ f1 multiplies pt,h/mh,

while for quadratic cuts fn ⌘ f2 multiplies (pt,h/mh)2 (in all cases there are additional

higher order terms that are not shown). For a leading threshold of pt,cut, s0 = 2pt,cut/mh

and f0 =
p
1� s

2

0
, while for the rapidity cut s0 = 1/ cosh(yh�ycut). For a cut on the softer

lepton’s transverse momentum of pt,� > pt,cut��, the right-most column indicates the pt,h
value at which the pt,� cut starts to modify the behaviour of the acceptance (additional

O
�
�2

/mh

�
corrections not shown). For the interplay between hardness and rapidity cuts,

see sections 4.2, 4.3 and 5.2.

In the Higgs and Drell-Yan cases, the poor perturbative behaviour can be directly

traced back to the linear dependence of the H ! �� acceptance on the Higgs boson

transverse momentum for low pt,h values, which is a feature both of symmetric cuts and

the asymmetric cuts that have come to replace them in many contexts. One possible

solution is to supplement fixed-order calculations with suitable resummations, as outlined

nearly twenty years ago in the dijet context [21] and advocated recently for the Higgs case

in Ref. [12]. For legacy fiducial measurements, this is probably the only viable solution.

For future measurements, however, we argue that the choice of cuts should be revisited,

so that one can fully retain the power and conceptual simplicity of fixed-order calculations.

A summary of the behaviour of di↵erent cuts is given in Table 1. A straightforward way

of eliminating linear pt,h dependence is to replace a cut on the higher-pt photon with

a cut on the sum or product of the two photon transverse momenta. This leaves just

a quadratic dependence on pt,h, significantly reducing the problems of convergence and

low-pt,h sensitivity in fixed-order perturbative predictions. The clearest illustration of

the impact is perhaps the comparison of Fig. 3 for asymmetric cuts with with Fig. 5

for sum and product cuts (all using an N3LL approximation for the perturbative series).

Ultimately, product cuts seem preferable to sum cuts because their residual quadratic

dependence is smaller. Combining product (or sum) hardness cuts with rapidity cuts

leaves the conclusions unchanged, so long as any rapidity bins are kept reasonably wide

around certain critical Higgs rapidities, cf. Eq. (4.21).

It turns out that it is also possible to design cuts whose acceptance is independent of

– 46 –
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CUTS TO REMOVE THE IR SENSITIVITY
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Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series

3

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

affected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses different transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 → 1 processes, both inclusively [5–8]

and differential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections differential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H → γγ decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H → γγ decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h
mh

+O
(
p2t,h
m2

h

)
. (1.1)

In section 2, concentrating on the H → γγ case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h → 0 results in a perturbative series for the

fiducial cross section that diverges (−1)nαn
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of αs, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is different, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (Λ/mh), where Λ ≡ Λqcd ∼ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H → γγ

– 2 –
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resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

affected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses different transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 → 1 processes, both inclusively [5–8]

and differential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections differential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H → γγ decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H → γγ decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h
mh

+O
(
p2t,h
m2

h

)
. (1.1)

In section 2, concentrating on the H → γγ case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h → 0 results in a perturbative series for the

fiducial cross section that diverges (−1)nαn
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of αs, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is different, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (Λ/mh), where Λ ≡ Λqcd ∼ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H → γγ

– 2 –
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Linear ptH dependence of H acceptance, f(ptH) → impact on perturbative series

3

resonance such as a Z or Higgs boson. Refs. [1–3] noted that the common practice at

the time, of applying identical minimum thresholds on the transverse momenta of the two

objects (“symmetric cuts”), led to sensitivity to configurations with a small transverse

momentum imbalance between the two objects, where perturbative calculations could be

affected by enhanced (though integrable) logarithms of the imbalance. Ultimately, the

discussions in those papers resulted in the widespread adoption of so-called “asymmetric”

cuts whereby one chooses different transverse-momentum thresholds for the harder and

softer of the two jets.

In recent years, QCD calculations have made amazing strides in accuracy (for a review,

see Ref. [4]), reaching N3LO precision for key 2 → 1 processes, both inclusively [5–8]

and differential in the rapidity [9, 10] and in the full decay kinematics [11–13]. As the

calculations have moved forwards, an intriguing situation has arisen in the context of gluon-

fusion Higgs production studies, where the calculations are arguably the most advanced.

For this process, inclusive cross sections and cross sections differential in the Higgs boson

rapidity show a perturbative series that converges well at N3LO. However, calculations for

fiducial cross sections, which include asymmetric experimental cuts on the photons from

H → γγ decays, show poorer convergence and significantly larger scale uncertainties [11,

12]. Furthermore, it turns out that to obtain the correct N3LO prediction, it is necessary

to integrate over Higgs boson transverse momenta that are well below a GeV, which is

physically unsettling (albeit reminiscent of the early observations in Ref. [1–3]).

Refs. [12, 14] have noted that such problems (which appear to be present to a lesser

extent also in the context of Drell-Yan studies) are connected with the fact that both

asymmetric and symmetric cuts yield an acceptance for H → γγ decays, f(pt,h), that has

a linear dependence on the Higgs boson transverse momentum pt,h [15, 16]:

f(pt,h) = f0 + f1 ·
pt,h
mh

+O
(
p2t,h
m2

h

)
. (1.1)

In section 2, concentrating on the H → γγ case, we will review how this linear depen-

dence arises and we will also examine its impact on the perturbative series with a simple

resummation-inspired toy model for its all-order structure. That model implies that any

power-law dependence of the acceptance for pt,h → 0 results in a perturbative series for the

fiducial cross section that diverges (−1)nαn
sn!, i.e. an alternating-sign factorial divergence,

coming predominantly from very low pt,h values.

Factorial growth implies that, however small the value of αs, the perturbative series will

never converge. Non-convergence of the series is a well known feature of QCD, notably be-

cause of the same-sign factorial growth induced by infrared QCD renormalons [17]. In that

context, the smallest term in the series is often taken as a fundamental non-perturbative

ambiguity. The alternating-sign factorial growth that we see is different, in that the sum

of all terms can be made meaningful, with the help of resummation. However, fixed-order

perturbative calculations still cannot reproduce that sum to better than the smallest term

in the series. As is commonly done with infrared renormalon calculations, one can express

the size of the smallest term in the series as a power of (Λ/mh), where Λ ≡ Λqcd ∼ 0.2 GeV

is the fundamental infrared scale of QCD. The power that emerges with standard H → γγ

– 2 –
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might hope for, even if the coe�cients of the breakdown are small. Furthermore the e↵ective

power scaling of the minimal term of the perturbative series in the DL approximation,

(⇤/Q)23/36 (Eq. (2.13)), is not entirely reassuring, even if subleading logarithmic e↵ects

are likely to modify the power.

In this subsection we start our investigation of cuts for which the acceptance is entirely

independent of pt,h at small values of pt,h (with the remainder of our analysis to be given

in section 5, after we have considered the issue of rapidity cuts). We will work within

the constraint that a direct cut of pt,cut � � on the pt on the softer of the two photons

is experimentally unavoidable. Additionally, we will aim to maintain the same pt,h = 0

acceptance as for the asymmetric, product and sum cuts.

At pt,h = 0 a cut on pt,± is equivalent to a cut on sin ✓ in the Collins-Soper parametri-

sation of the decay phase space in Eq. (2.1). Our core idea here is to cut on sin ✓ as defined

in that parametrisation also for non-zero pt,h. In practice we express this condition by

introducing a “Collins-Soper” decay transverse momentum in terms of the kinematics of

the two decay products

~pt,cs =
1

2

"
~�t +

~pt,12.
~�t

p
2

t,12

✓
m12

p

m
2

12
+ p

2

t,12

� 1

◆
~pt,12

#
, ~�t = ~pt,1 � ~pt,2 , (3.15)

where ~pt is the (two-dimensional) vector transverse component of a momentum p and

the dot product is a two-dimensional scalar product. It is irrelevant which of the decay

products is labelled 1 and 2. We have written the definition in terms m12, the invariant

mass of the two-body system and ~pt,12, the net transverse momentum of the two-body

system, which in the Higgs decay case are simply mh and ~pt,h. At pt,12 ⌘ pt,h = 0, the

second term in the square brackets vanishes and since the two decay products are back

to back, pt,cs = pt,1 = pt,2. For general pt,h it is straightforward to verify that Eq. (3.15)

yields 2pt,cs/m12 ⌘ sin ✓. Our cuts are then pt,cs > pt,cut and pt,� > pt,cut ��.

For values of pt,h that are not too large,

pt,h < p
cs-threshold

t,h =
2mh

⇣
pt,cut

p
m2

h + 4�(�� 2pt,cut) +mh(�� pt,cut)
⌘

m2
h � 4p2

t,cut

, (3.16a)

= 2�+
4pt,cut�2

m2
h

+O3 , (3.16b)

the acceptance is simply f(pt,h) = f0. Including the region beyond the transition at first

order in pt,h/mh we have

f
cs(pt,h) = f0 �

4pt,cut
⇡mhf0

�(pt,h, 2�+O2)

mh

(1 +O2) , (3.17)

with, once again, the usual transition beyond pt,h ' 2�.

Fig. 6 compares the pt,cs cut acceptance with that of the product cut (both additionally

include the requirement pt,� > 0.25mh). Up to pt,h ' 2� = 0.2mh, the pt,cs cut acceptance

is independent of pt,h, as desired. However at larger pt,h values, it has a considerably lower

acceptance than the product cut. This is less than ideal phenomenologically, because in
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Core idea 1: cut on decay  
pt in Collins-Soper frame

Algorithm 1 Hardness Compensating Boost-Invariant (CBIH) cut algorithm to determine

whether an event with a two-body decay should be accepted. It takes a Born transverse-

momentum threshold ptcut and a minimum pt requirement, pt,�,cut ⌘ ptcut � � on both

decay products.

1: If pt,� < pt,�,cut discard the event.

2: If pt,cs � pt,cut, with pt,cs is defined in Eq. (3.15), accept the event.

3: If either of U(�̄cs) and U(⇡/2� �̄cs) is negative, as obtained using Eqs. (5.2) and (5.3),

accept the event.

4: If sin ✓+cs(�̄cs) in Eq. (5.6) is between 0 and 1 and cos ✓cs > cos ✓+cs(�̄cs), accept the

event.

5: If �̄cs > ⇡/4, determine the value of ✓�cs, that would be obtained if one mirrored the �

value around ⇡/4. We refer to it as ✓
m
cs = ✓

�
cs(⇡/2 � �̄cs). If cos ✓mcs < f0, accept the

event if cos ✓cs < 2f0 � cos ✓mcs.

6: Reject the event.

Figure 11: Action of the hardness-compensating boost-invariant (CBIH) cuts in the �̄cs–

✓cs plane, as compared to the pt,cs and pt,� cuts of section 3.5, whose action was shown in

Fig. 10.

be independent of the acceptance-induced alternating-sign factorial divergence discussed

in sections 2 and 3. At higher pt,h values, the acceptance then closely tracks the maximum

possible acceptance that can be obtained with the pt,� cut. Thus the CBIH cut is near

optimal.17

For all of the other hardness cuts considered so far, we have included equations such

as Eq. (2.23) and plots such as Fig. 3 to illustrate the perturbative behaviour of the

cuts. For CBIH cuts with the standard thresholds, the terms in the perturbative series are

essentially zero and the N3LL and N3LO acceptance corrections are zero for ✏ . mh/2:

17Careful inspection of Fig. 12 reveals an e�ciency around 100 GeV that is very slightly lower than that

with just a pt,� cut (or its combination with a product cut). The origin is just barely visible in Fig. 11 where

the 75 and 100 GeV panels show a CBIH exclusion region just below the rightmost edge of the pt,� curve.

One could recover this region, by accepting an event whenever the pt,� cut is satisfied and the cos ✓+cs(�̄cs)

solution is physical. This naive approach leads to a sharp feature in the acceptance at pt,h = 2pt,�,cut,

which is the reason why we do not adopt it as our default.
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Sensitivity to low Higgs pt (and also scale bands): standard cuts

27Figure 3: The N3LL resummed result and its truncation at N3LO for the fiducial cor-

rections to the Higgs cross section, as defined in Eq. (2.22), for asymmetric pt,� cuts,

pt,+ > 0.35mh and pt,� > 0.25mh. The results are shown as a function of ✏, the mini-

mum Higgs pt used in the integration (conceptually analogous to a technical cuto↵ in a

projection-to-Born fixed-order calculation). The bands are the result of varying renormali-

sation and factorisation scales by a factor of two around mh/2. The N3LL distribution and

expansion used to obtain these results were kindly supplied by the authors of the RadISH

framework [44].

a consequence of the fact that the NNLL and N3LL results includes a substantial part of

the K factor for inclusive Higgs production. The NNLL and N3LL results are themselves

close. Examining the fixed-order results, the main feature to note is that up to N3LO there

is no truncation of the series that agrees with the resummed result.

Fig. 3 illustrates the N3LO truncation compared to the resummation, as a function

of the cuto↵ ✏ in Eq. (2.22). First considering the small-✏ limit, the di↵erence of 0.22

between the central N3LO result and the resummation corresponds to a roughly 7% rel-

ative e↵ect on the full cross section (after accounting for an overall K-factor of about 3).

This is significantly larger than the perturbative scale uncertainty on the inclusive N3LO

cross section [6]. The scale variation bands demonstrate a large scale sensitivity for the

fixed-order result, which does not overlap with the resummed result (though contributions

beyond the resummation could modify this aspect). The pattern of ✏-dependence in Fig. 3

confirms the expectation from Eq. (2.20) that the fixed-order result is highly sensitive to

unphysically low pt,h values.7

One may ask whether a badly divergent perturbative series for a fiducial cross section

is a problem: after all, there are various ways of evaluating the fiducial cross section via

the matching of resummations and fixed order, including the pt,h dependence acceptance

7One intriguing feature is that setting ✏ in the range of a few hundred MeV to one GeV gives an N3LO

truncated result that is much closer to the full N3LL result, and with a reduced scale uncertainty.

– 13 –
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Sensitivity to low Higgs pt (and also scale bands): sum & product cuts

28

Figure 4: Comparison of the pt,h-dependent acceptances for the sum, product and stag-

gered cuts. For the staggered cuts, pt,y+ corresponds to the transverse momentum of the

photon at higher rapidity. As in Fig. 2, the points corresponds to Monte Carlo evaluations

of the acceptances. Lines use series expansions to fourth order and bands (where visible)

show the size of the fourth order term.

Figure 5: The N3LL resummed result and its N3LO truncation, for sum cuts (left) and

product cuts (right), as a function of ✏, the minimum pt,h in Eq. (2.22). Note the di↵erent

scale relative to Fig. 3.

clearly sees the transition to linear pt,h dependence for pt,h & 2� in the case of the sum

and product cuts and for pt,h > � for the staggered cuts.

The perturbative convergence of the acceptance with sum and product cuts is illus-

– 18 –
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Option of changing thresholds
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Interplay with rapidity cuts

30
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CBIHR cuts: acceptance v. ptH at several yH values

31
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CBIHR w. CMS rapidity cuts

32
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Example in Drell-Yan case

33Figure 14: Left: acceptances for the non-zero spherical harmonics, as defined in Eq. (6.4),

for symmetric cuts (pt,` > 25 GeV, in red), and product cuts (
p
pt,+pt,� > 30 GeV,

supplemented with a minimum cut pt,� > 25 GeV, in black). Right: the unpolarised part

of the cross section (i.e. corresponding to f
(u)) within an all-order N3LL calculation (in

blue) and its truncation at N3LO (in red), as a function of the minimum pt,`` that is allowed

in the integration. The results are shown for the same symmetric and product cuts as in

the left-hand plot.

used to obtain the N3LL results were kindly provided by the authors of Ref. [45])

�
(u)

sym � f0�inc

�0f0
' �0.074↵s + 0.051↵2

s
� 0.057↵3

s
+ 0.090↵4

s
� 0.180↵5

s
+ . . . ' �0.047 @DL,

' �0.074↵s + 0.027↵2
s
� 0.014↵3

s
+ 0.010↵4

s
� 0.010↵5

s
+ . . . ' �0.055 @LL,

' �0.118↵s + 0.012↵2
s
� 0.016↵3

s
+ . . . ' �0.114 @NNLL,

' �0.118↵s + 0.012↵2
s
� 0.016↵3

s
+ . . . ' �0.114 @N3LL.

(6.5)

It is the linear dependence of f (u) that will be critical, so the above equations show just

the contribution to the cross section from f
(u). The DL and LL results both show a

breakdown in the convergence of the series, though at somewhat di↵erent orders and with

fairly di↵erent normalisations for the smallest term.21 Considering the N3LL series, the

all-order N3LL result and its N3LO truncation disagree at the order of a percent relative

to the Born cross section.

The dependence of the unpolarised part of the fiducial cross section on a pt,`` cuto↵

and the impact of scale variation are illustrated in Fig. 14 (right). The N3LO truncation

is noticeably sensitive to the minimum pt,`` allowed in the integration, converging only

21In the LL case, the smallest term in the series scales as (⇤/Q)0.76 rather than the (⇤/Q)23/64 '

(⇤/Q)0.36 seen at DL level in Eq. (2.13), cf. Appendix B. As in the Higgs case, the investigations of

Appendix B suggest that for linear cuts, the power scaling seen at LL may well hold beyond, while for

quadratic cuts we have not conclusively established the power.
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DY pt dependence of harmonic acceptances with product and boost invariant cuts

34Figure 15: Top panels: pt,`` = 0 harmonic acceptances for Z ! `
+
`
�, as defined in

Eq. (6.4), for each of the spherical harmonic functions in Eq. (6.2). Lower panels: the

pt,`` = 0 derivatives of the acceptances for the f (x) that are non-zero. The left-hand column

shows results for product cuts, the right-hand column for the CBIH cuts supplemented with

the condition in Eq. (6.7) (which, together, we refer to as CBIH,DY cuts). In both figures

we use events with a fixed m`` = mZ = 91.1876 GeV.

discussion above that f
(1)(pt,``) multiplies A1(pt,``) and that the latter goes at most as

pt,`` for small pt,``, the net e↵ect on the cross section will remain quadratic. Thus we

conclude that combining product hardness cuts with standard lepton rapidity cuts, one

obtains quadratic dependence of the full acceptance on pt,``, as long as one uses suitably

wide rapidity binning for the lepton pair around yt. This should ensure that the good

perturbative behaviour of product cuts illustrated in Fig. 14 (right) carries over to the case

also with rapidity cuts.
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The last question that we touch on concerns the design of cuts for which the acceptance

is independent of pt,`` at low values of pt,``. While a complete study is beyond the scope

of this article, we can already envisage one complication relative to the Higgs production

case, namely that f (0) is non-zero and multiplies a function A0 which is zero for pt,`` = 0,

but has non-trivial (quadratic) pt,`` dependence beyond that point. One solution to this

issue is to design cuts that lead to f
(0) = 0. For a pt,cs cut that corresponds to a constraint

cos ✓ < c, a zero value of f (0) can be obtained by placing an additional requirement

cos ✓ > c̄ =
�c0 +

p
4� 3c2

2
, (6.7)

as can be verified by integrating h0 in the range c̄ < cos ✓ < c. This gives a non-zero

range for c >

p
1/3. To illustrate what can be achieved, we take the CBIH procedure,

algorithm 1, and supplement step 1 with the condition that the event is also discarded if

cos ✓cs < c̄, calling this the CBIH,DY algorithm. The results are shown in Fig. 15 (right). It

is clear that there is a substantial reduction in the acceptance relative to the product cuts.

However, typically Drell-Yan measurements at low and moderate pt,`` are not statistics

limited, so one may anticipate that this would not be an issue.25 The characteristic that

we intended to obtain, and that has been obtained, is that at central y`` rapidities, f (0,1,2)

are now all identically zero for pt,`` . 2�, and f
(u) is independent of pt,`` in that same

range. This guarantees that the fiducial cross section at those rapidities is independent

of pt,`` up to roughly 2�, within the approximation that the harmonic decomposition of

Eq. (6.1) completely describes the cross section.

Clearly there is scope for further investigation of the Drell-Yan process, both resonant

and non-resonant, but the material presented here provides at least some of the elements

that one might wish to consider and expand on in such a study.

7 Conclusions

In this article, we have seen that current widely used cuts for two-body collider processes

can have severe consequences for perturbation theory, leading to contributions that diverge

factorially as one goes to higher orders. Unlike the renormalon-induced factorial divergences

that are an expected feature of perturbation theory but set in at very high orders, the

structures that we have observed here set in early, cf. Eq. (2.19) in a simple approximation

for the all-order structure of the H ! �� fiducial cross section. These problems are clearly

visible in recent full N3LO fiducial calculations [11, 12] and they are associated also with

fixed-order calculations’ strong sensitivity to unphysically low momentum scales. In more

general terms, we expect such problems to arise whenever one integrates a power of some

quantity v in a phase-space region where the perturbative series involves exponentiating

double logarithms of v. It would be valuable to develop a more systematic understanding

of how and where such problems may appear.

25A more problematic issue might be that the Born acceptance goes to zero at y`` ' 2 rather than 2.4.

However, in the region of y`` > yt ' 1.42, the property of independence of the harmonic acceptances on

pt,`` is anyway lost and, as things stand, one might anyway prefer simple product cuts in that region.
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Getting identically zero pt 
dependence for all 
harmonic acceptances 
requires an extra cut


