CUTS FOR 2-BODY DECAYS AT COLLIDERS 18th workshop of the LHC Higgs Working Group, 3 December 2021

Gavin Salam, with Emma Slade, <u>arXiv:2106.08329</u> Rudolf Peierls Centre for Theoretical Physics & All Souls College, University of Oxford

Precision is crucial part of LHC programme: e.g. establishing the Higgs sector

Over the next 15 years Today's ~8% (on $H \rightarrow \gamma \gamma$) $\rightarrow \sim 2\%$ at HL-LHC

We wouldn't consider QED established if it had only been tested at O(10%) accuracy

Gavin P. Salam

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment

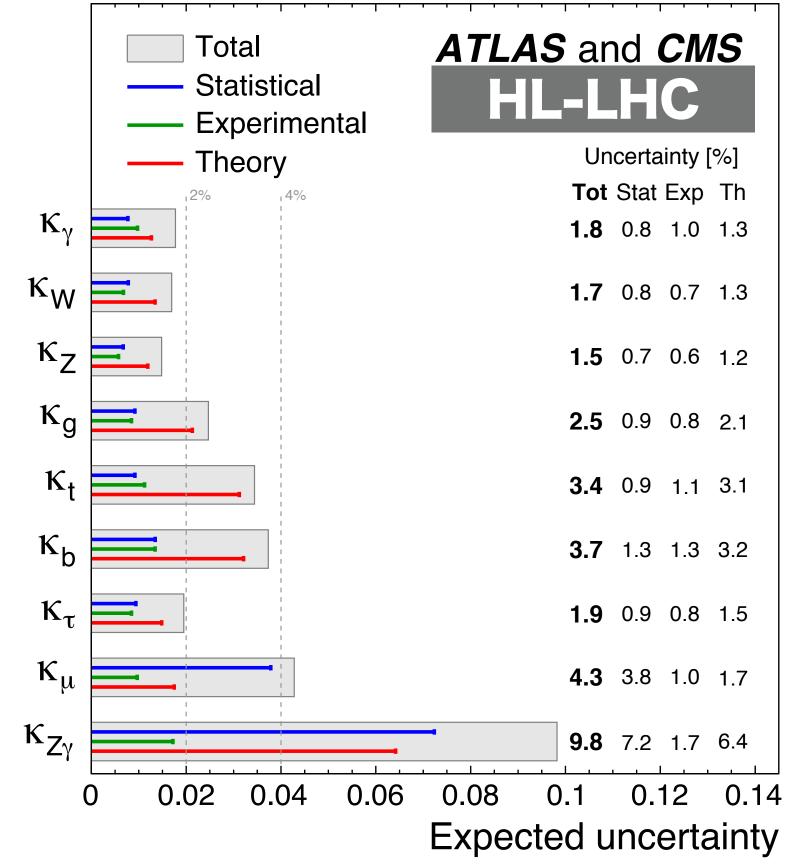


Figure 1. Projected uncertainties on κ_i , combining ATLAS and CMS: total (grey box), statistical (blue), experimental (green) and theory (red). From Ref. [2].

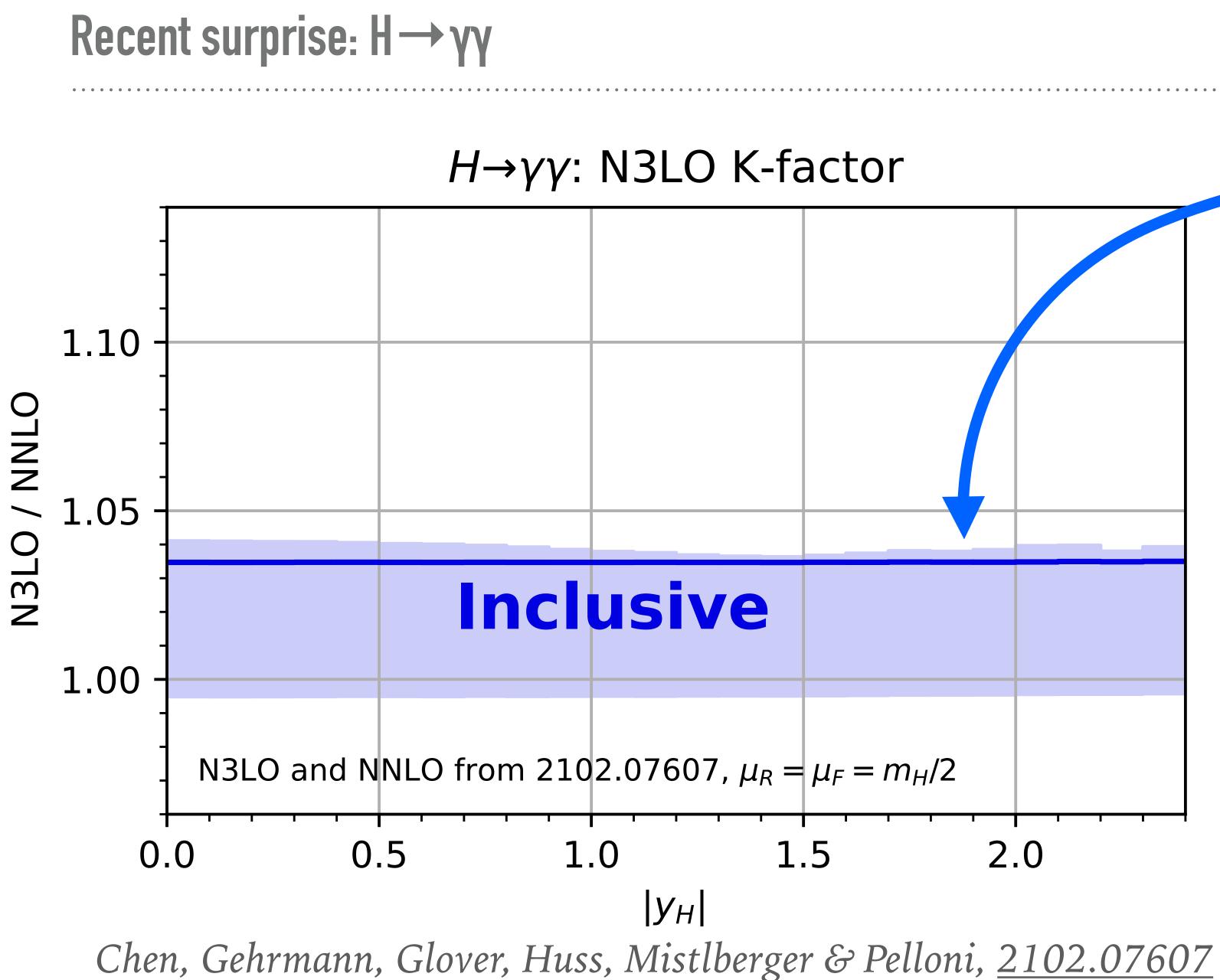
Starting point for any hadron-collider analysis: acceptance (fiducial) cuts

- E.g. ATLAS/CMS $H \rightarrow \gamma \gamma$ cuts
- > Higher- p_t photon: $p_{t,\gamma} > 0.35 m_{\gamma\gamma}$ (ATLAS) or $m_{\gamma\gamma}/3$ (CMS)
- > Lower- p_t photon: $p_{t,\gamma} > 0.25m_{\gamma\gamma}$
- Both photons: additional rapidity and isolation cuts

Essential for good reconstruction of the photons and for rejecting large low- p_{t} backgrounds.

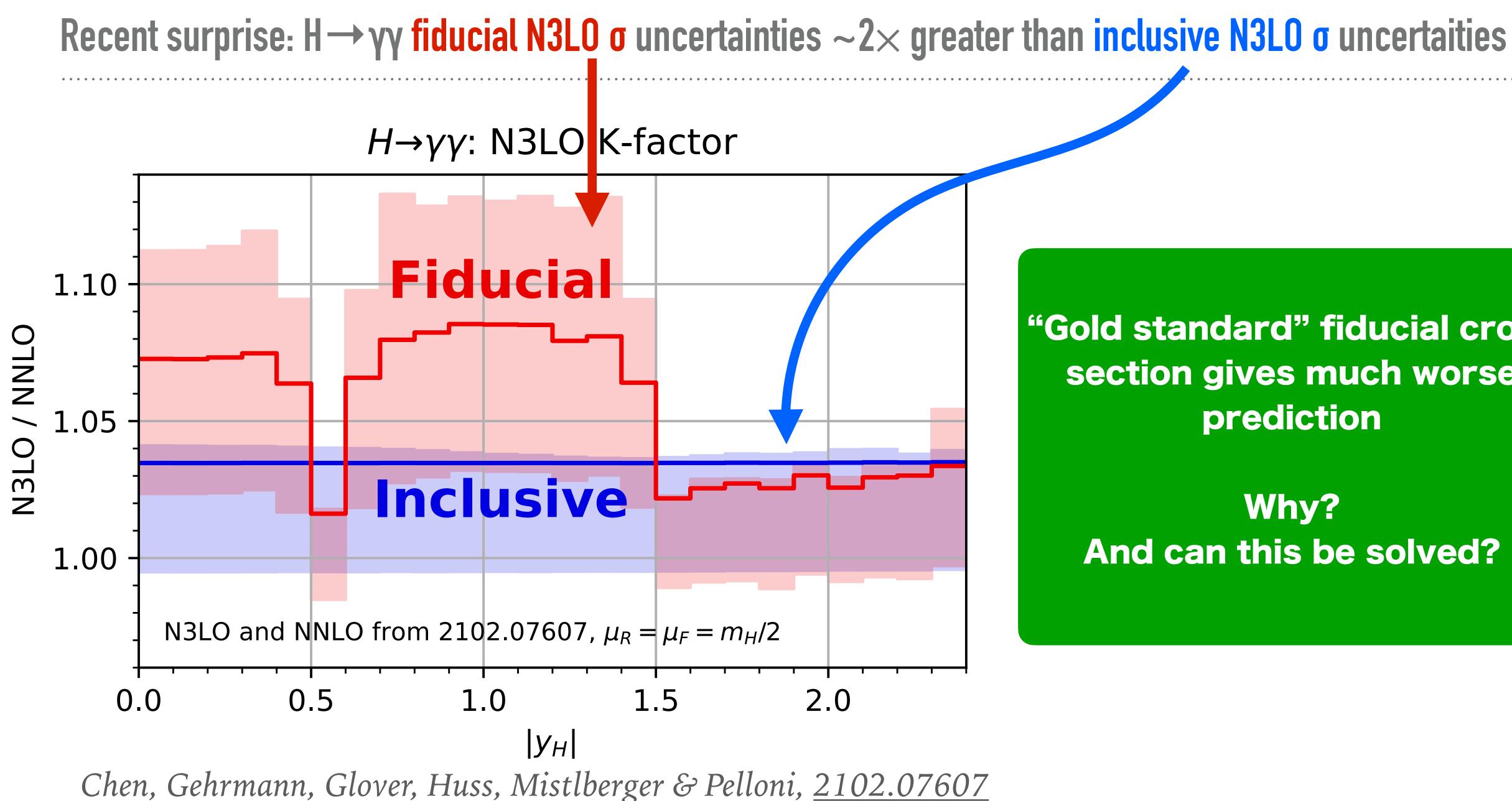
Theory-experiment comparisons with identical "fiducial" cuts often considered the Gold Standard of collider physics

2-body cuts, Snowmass Energy Frontier Workshop



2-body cuts, Snowmass Energy Frontier Workshop

inclusive N3L0 σ uncertaities

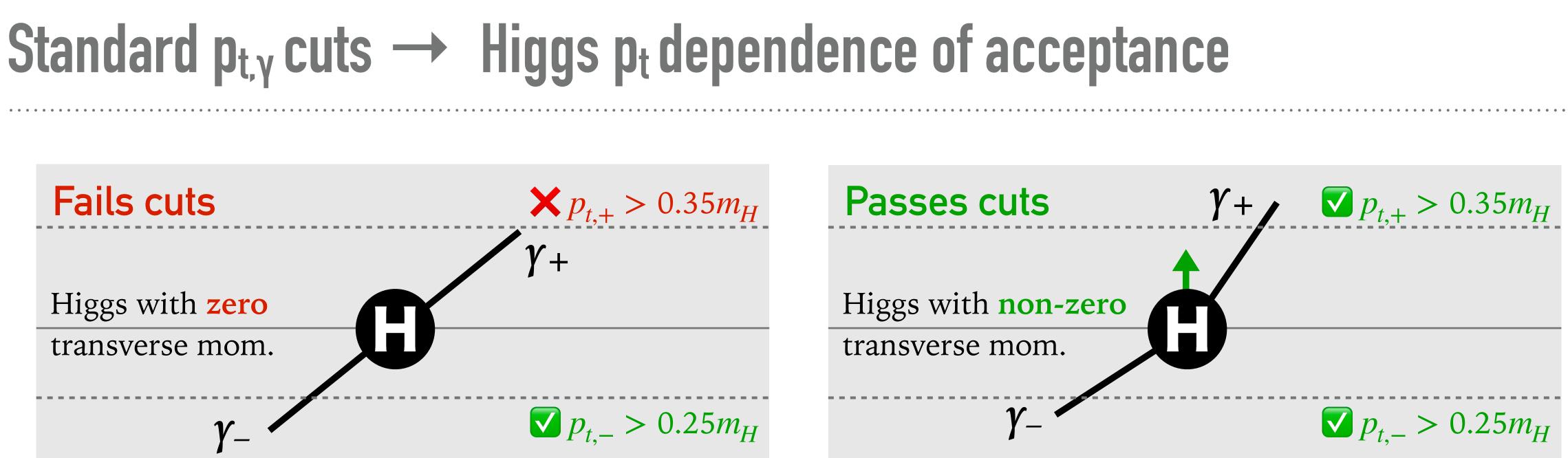


Gavin P. Salam

2-body cuts, Snowmass Energy Frontier Workshop

"Gold standard" fiducial cross section gives much worse prediction

> Why? And can this be solved?



Numbers are for ATLAS $H \rightarrow \gamma \gamma p_t$ cuts, CMS cuts are similar

Expect acceptance to increase with increasing $p_{t,H}$

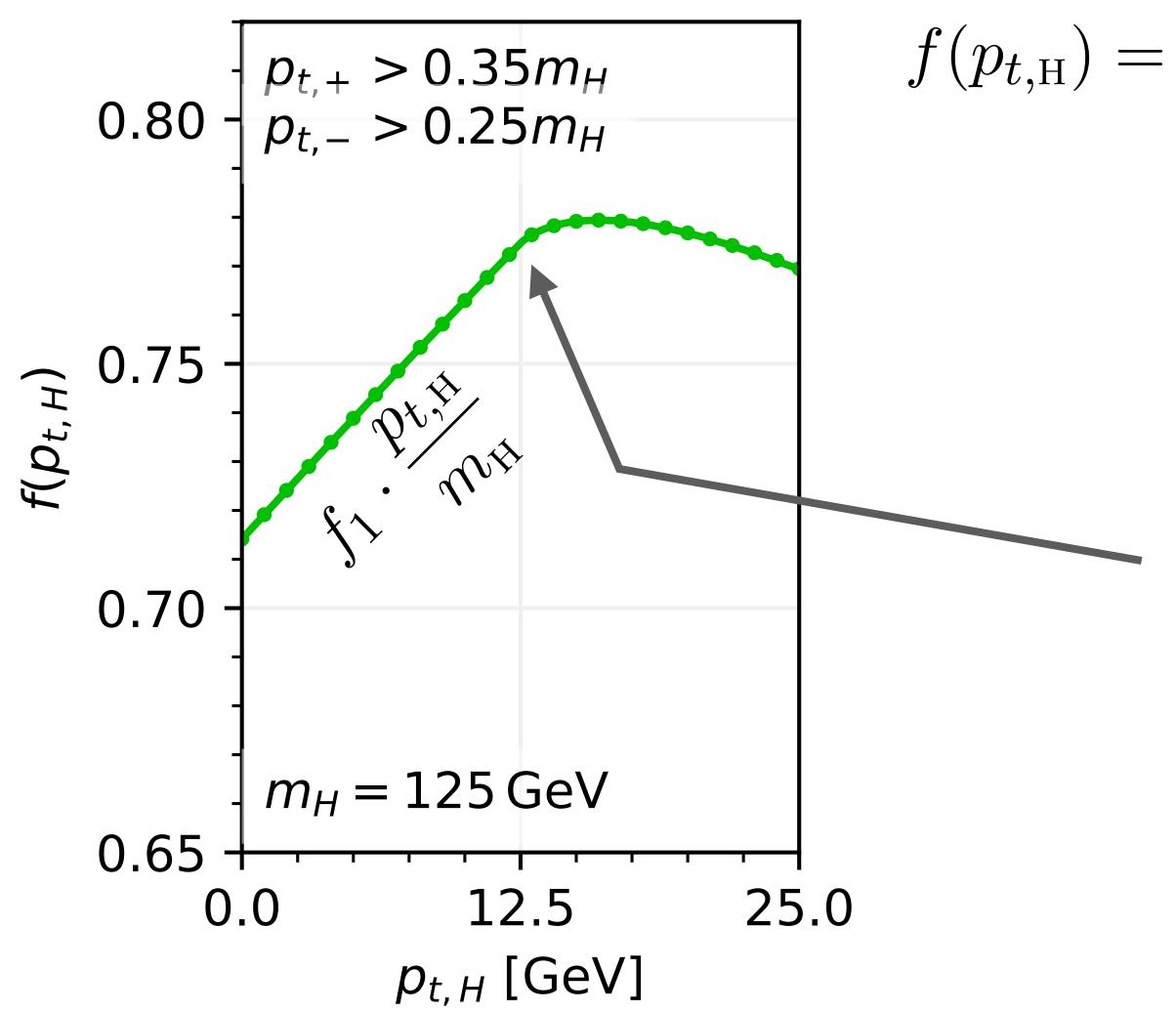
$$p_{t,\pm}(p_{t,\mathrm{H}},\theta,\phi) = \frac{m_{\mathrm{H}}}{2}\sin\theta \pm \frac{1}{2}p_{t,\mathrm{H}}|\cos\phi| + \frac{p_{t,\mathrm{H}}^2}{4m_{\mathrm{H}}}\left(\sin\theta\cos^2\phi + \csc\theta\sin^2\phi\right) + \mathcal{O}_3\,,$$

Gavin P. Salam

2-body cuts, Snowmass Energy Frontier Workshop

Linear p_{tH} dependence of H acceptance = $f(p_{tH})$

Acceptance for $H \rightarrow \gamma \gamma$



2-body cuts, Snowmass Energy Frontier Workshop

$$f_0 + f_1 \cdot rac{p_{t,\mathrm{H}}}{m_\mathrm{H}} + \mathcal{O}\left(rac{p_{t,\mathrm{H}}^2}{m_\mathrm{H}^2}
ight)$$
See e.g. Frixione & Ridol
Ebert & Tackmar
idem + Michel & Stewa
Alekhin et

 f_0 and f_1 are coefficients whose values depend on the cuts

effect of $p_{t,-}$ cut sets in at $0.1m_{\rm H}$

olfi '97 nn '19 art '20 al '20

perturbative series for fiducial cross sections

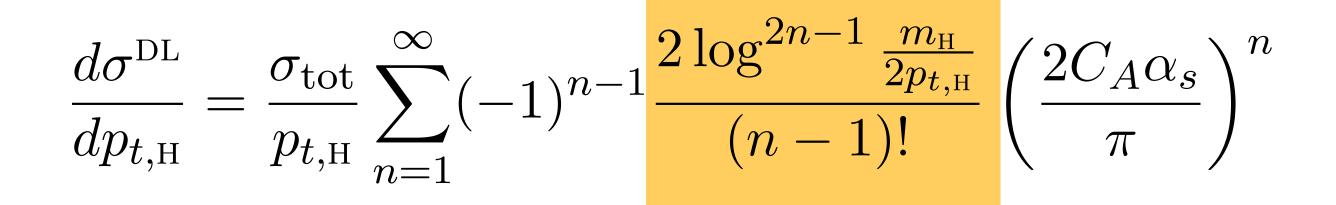
Fiducial cross section depends on acceptance and Higgs p_t distribution

To understand qualitative perturbative behaviour consider simple (double-log) approx for p_t distribution

Integrate to get result. **Observe** pathological $\sigma_{\rm fid} = \sigma_{\rm tot}$ perturbative behaviour

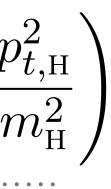
 $f(p_{t,\mathrm{H}}) = f_0 + f_1 \cdot \frac{p_{t,\mathrm{H}}}{m_{\mathrm{H}}} + \mathcal{O}\left(\frac{p_{t,\mathrm{H}}^2}{m_{\mathrm{H}}^2}\right)$

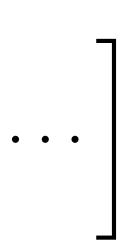
 $\sigma_{\rm fid} = \int \frac{d\sigma}{dp_{t\,\rm H}} f(p_{t,\rm H}) dp_{t,\rm H}$

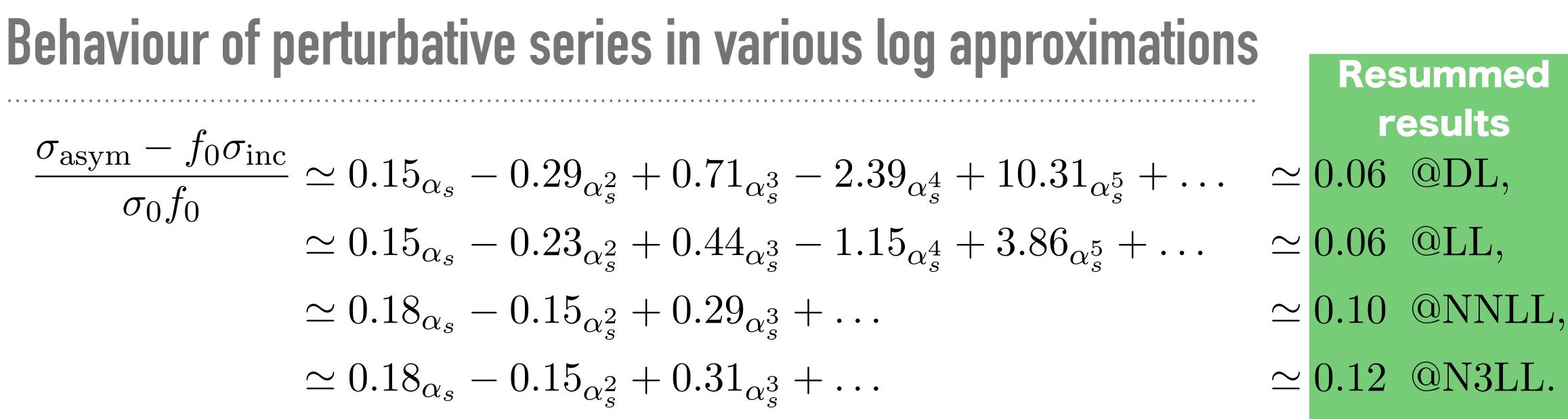


$$\int_{0}^{\infty} \left[f_{0} + f_{1} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(2n)!}{2(n!)} \left(\frac{2C_{A}\alpha_{s}}{\pi} \right)^{n} + \right]$$

Growth $\propto n$





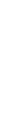


Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, $\mu = m_H/2$

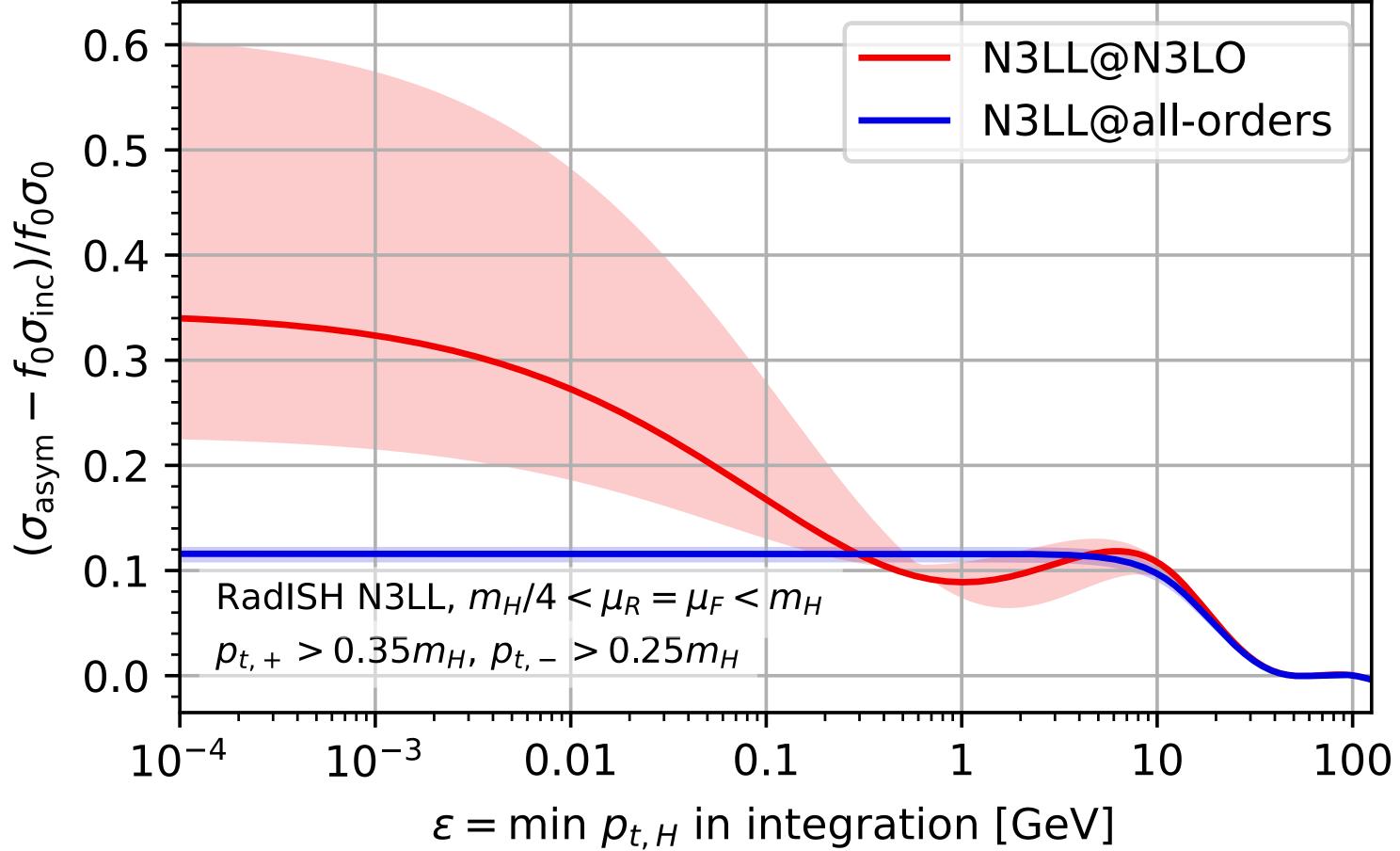
- ► Poor behaviour of N3LL is qualitatively similar to that seen by Billis et al '21
- > Theoretically similar to a power-suppressed ambiguity ~ $(\Lambda_{OCD}/m_{H})^{0.205}$ [inclusive cross sections expected to have Λ^2/m^2]

Gavin P. Salam

> At DL & LL (DL+running coupling) factorial divergence sets in from first orders



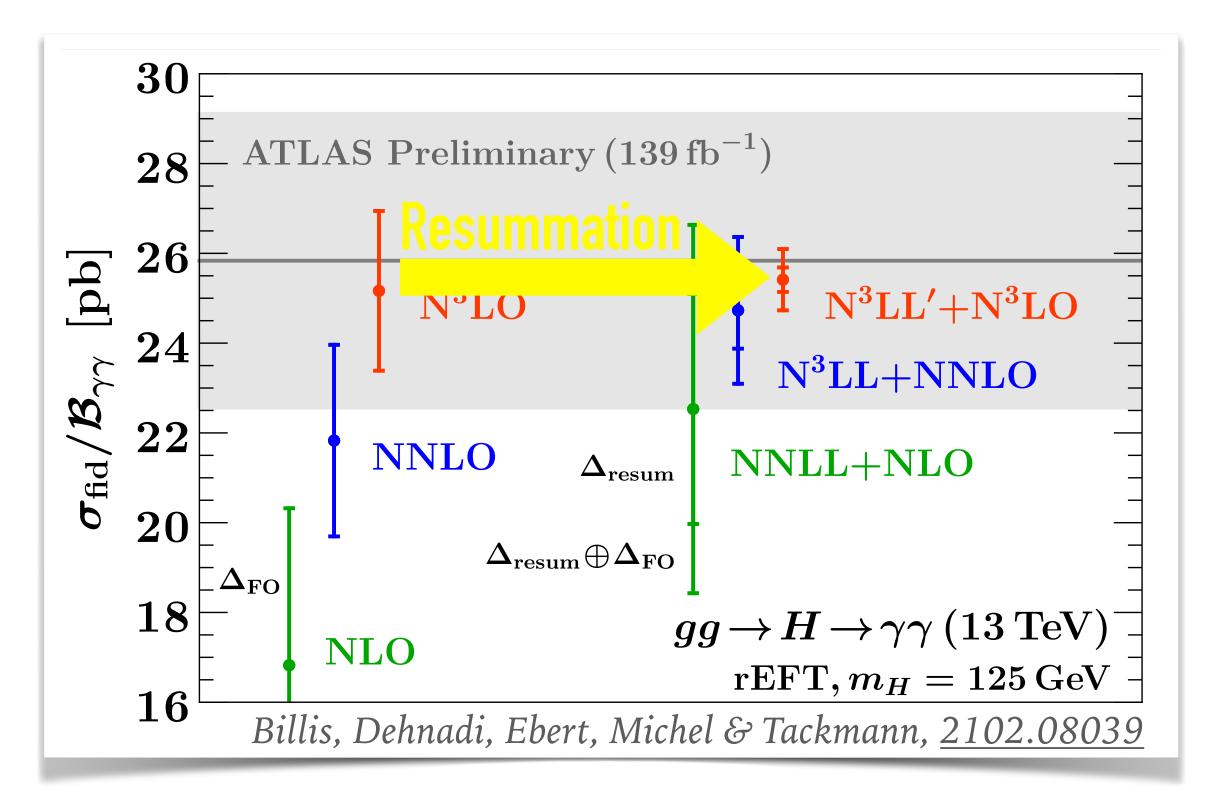
Sensitivity to low Higgs pt (and also scale bands): standard cuts



- fixed-order result very sensitive to minimum $p_{t,H}$ value explored in phasespace integration
- only converges once you explore down to $p_{t,\mathrm{H}} \sim 1 \,\mathrm{MeV}$
- ► i.e. extremely difficult to get reliable fixed-order result and once you have it, it is of dubious physical meaning

Solution #1: only ever calculate σ_{fid} with help of p_{tH} resummation

- ► Billis, Dehnadi, Ebert, Michel & Tackmann, 2102.08039, argue you should evaluate the fiducial cross section only after resummation of the p_{tH} distribution.
- ► For legacy measurements, resummation is only viable solution
- Our view: not an ideal solution
 - \blacktriangleright Fiducial σ is a hard cross section and shouldn't need resummation
 - robustness of seeing fixed-order & resummation agree)



► losing the ability to use fixed order on its own would be a big blow to the field (e.g. flexibility;

> sensitivity to variation of acceptance at low $p_{t,H} \rightarrow$ complications (e.g. sensitivity to heavy-quark effects in resummation and PDFs — not consistently treated in any N3LL resummation today)

Solution #2a: for future measurements, make simple changes to the cuts

- Simplest option is to replace the cut on the leading photon with a cut on the product of the two photon p_t 's
- ► E.g. $p_{t,\gamma+} \times p_{t,\gamma-} > (0.35m_H)^2$ (and still keep softer photon cut $p_{t,\gamma-} > 0.25m_H$)
- > The product has no linear dependence on $p_{t,H}$

$$p_{t,\text{prod}}(p_{t,\text{H}},\theta,\phi) = \sqrt{p_{t,+}p_{t,-}} = \frac{m_{\text{H}}}{2}\sin\theta + \frac{p_{t,\text{H}}^2}{4m_{\text{H}}}\frac{\sin^2\phi - \cos^2\theta\cos^2\phi}{\sin\theta} + \mathcal{O}_4$$

Gavin P. Salam

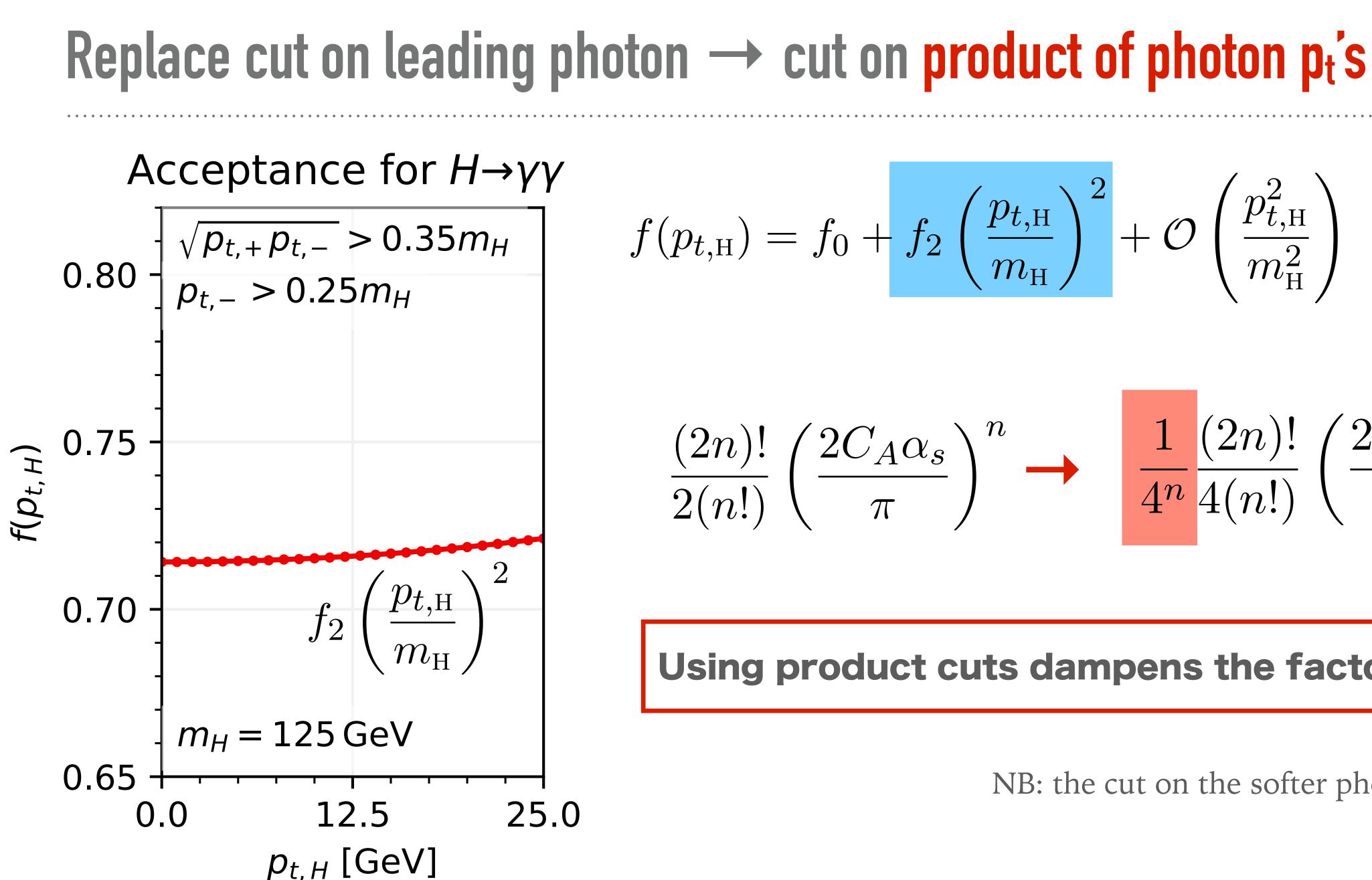
[Several other options are possible, but this combines simplicity and good performance]

Replace cut on leading photon \rightarrow cut on product of photon p_t 's Acceptance for $H \rightarrow \gamma \gamma$ $0.80 = \frac{\sqrt{p_{t,+}p_{t,-}} > 0.35m_H}{p_{t,-} > 0.25m_H}$ $f(p_{t,\mathrm{H}}) =$ f(p_{t, H}) 0.75 0.70 J_2 125 GeV 0.65 +25.0 0.0 12.5

*p*_{*t*, *H*} [GeV]

2-body cuts, Snowmass Energy Frontier Workshop

NB: the cut on the softer photon is still maintained



$$\left(\frac{2C_A\alpha_s}{\pi}\right)^n \longrightarrow \quad \frac{1}{4^n} \frac{(2n)!}{4(n!)} \left(\frac{2C_A\alpha_s}{\pi}\right)^n$$

Using product cuts dampens the factorial divergence

NB: the cut on the softer photon is still maintained

2-body cuts, Snowmass Energy Frontier Workshop

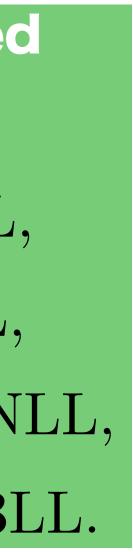
Behaviour of perturbative series with product cuts

 $\frac{\sigma_{\text{prod}} - f_0 \sigma_{\text{inc}}}{\sigma_0 f_0} \simeq 0.005_{\alpha_s} - 0.002_{\alpha_s^2} + 0.002_{\alpha_s^3} - 0.001_{\alpha_s^4} + 0.001_{\alpha_s^5} + \dots$ $\simeq 0.005_{\alpha_s} - 0.002_{\alpha_s^2} + 0.000_{\alpha_s^3} - 0.000_{\alpha_s^4} + 0.000_{\alpha_s^5} + \dots$ $\simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$ $\simeq 0.005_{\alpha_s} + 0.002_{\alpha_s^2} - 0.001_{\alpha_s^3} + \dots$

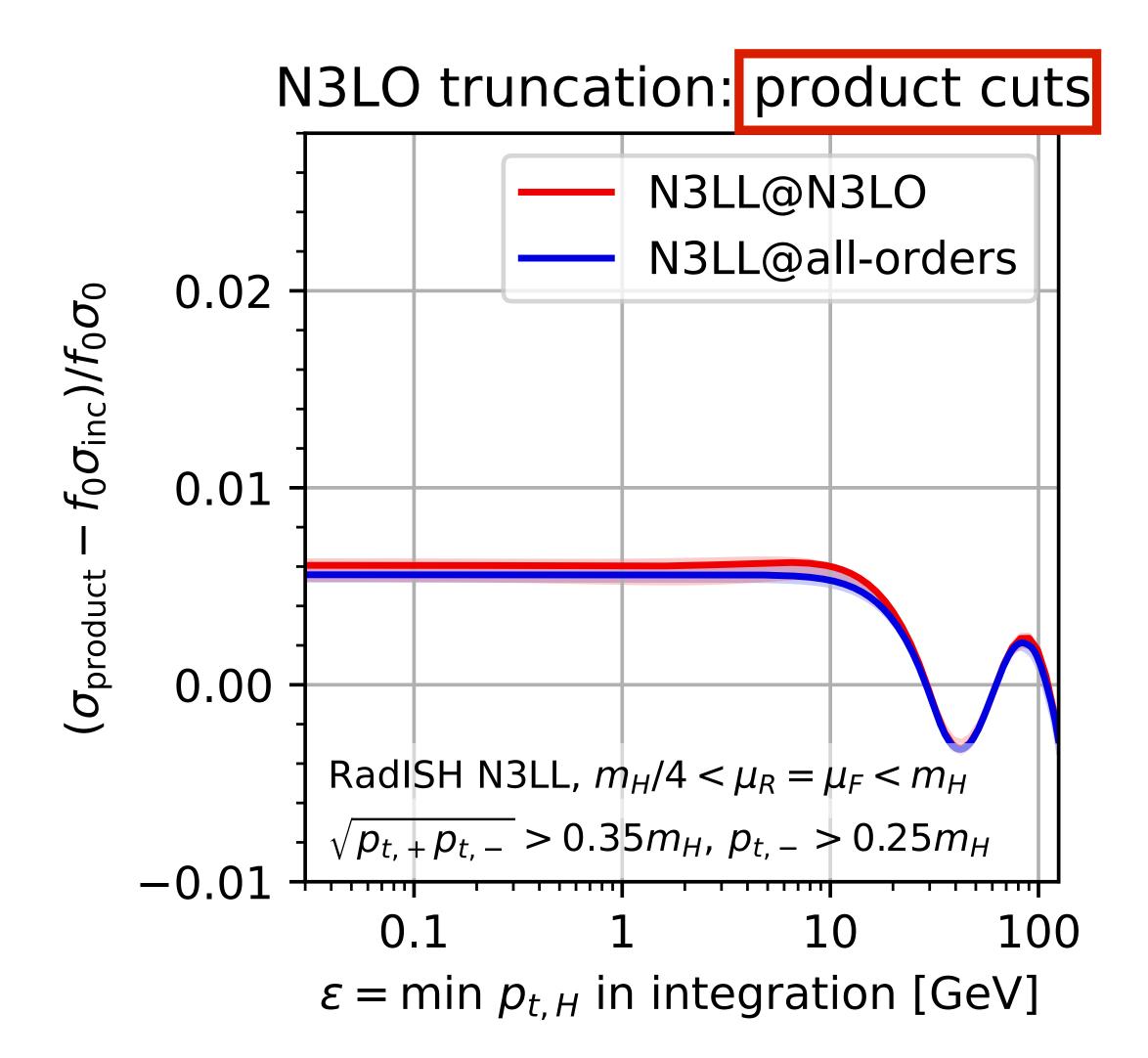
- Factorial growth of series strongly suppressed
- N3LO truncation agrees well with all-order result
- > Per mil agreement between fixed-order and resummation gives confidence that all is under control

- Resummed results $\simeq 0.003$ @DL, $\simeq 0.003$ @LL,
- $\simeq 0.005$ @NNLL,
- $\simeq 0.006$ @N3LL.

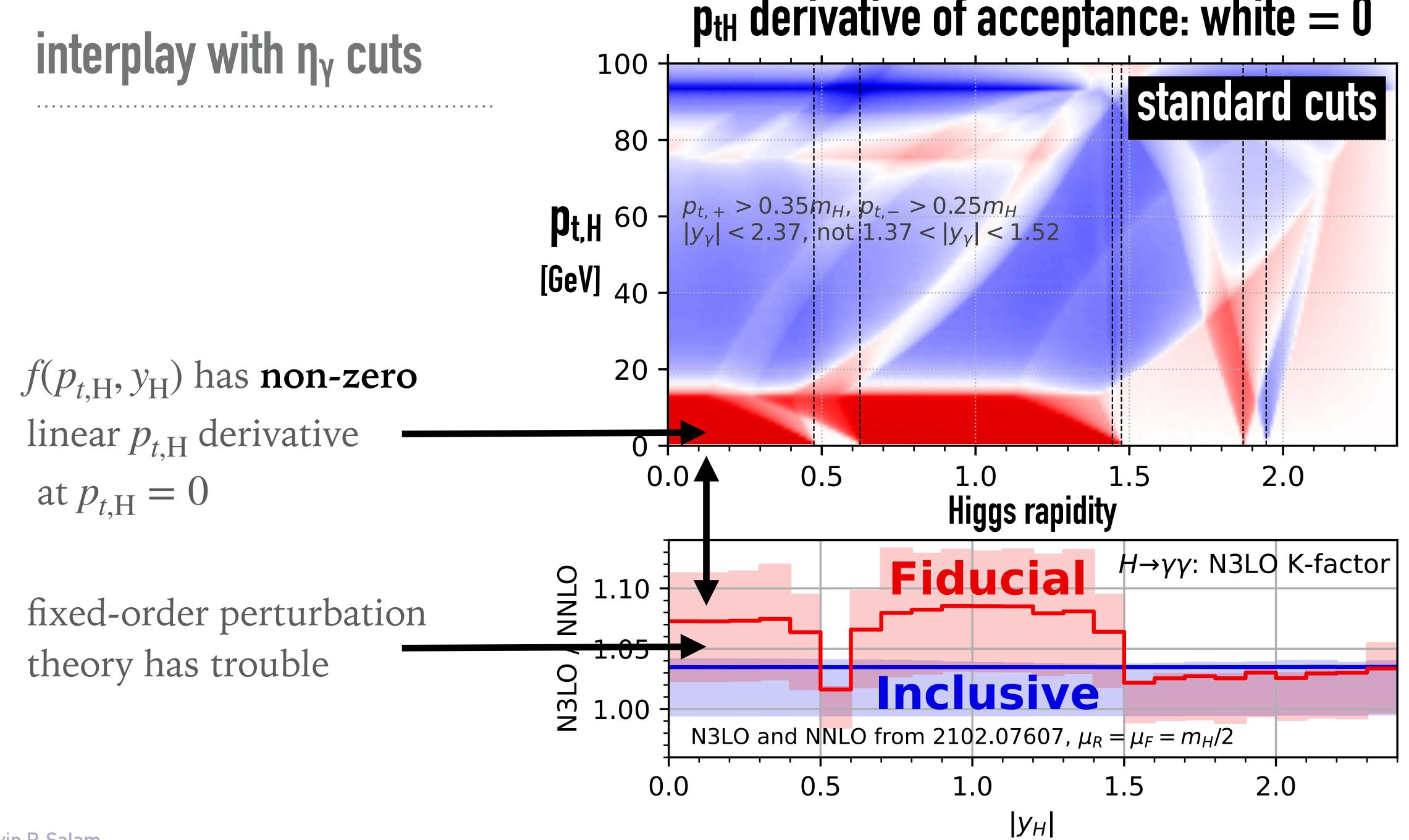
Thanks to Pier Monni & RadISH for supplying NN(N)LL distributions & expansions, $\mu = m_H/2$



fixed-order sensitivity to low ptH is gone

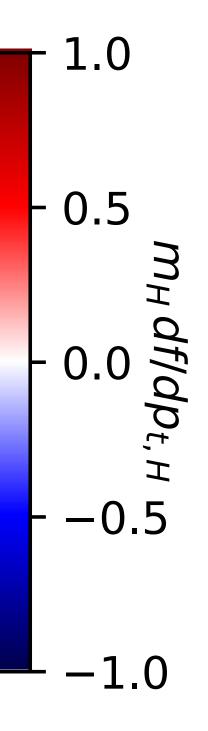


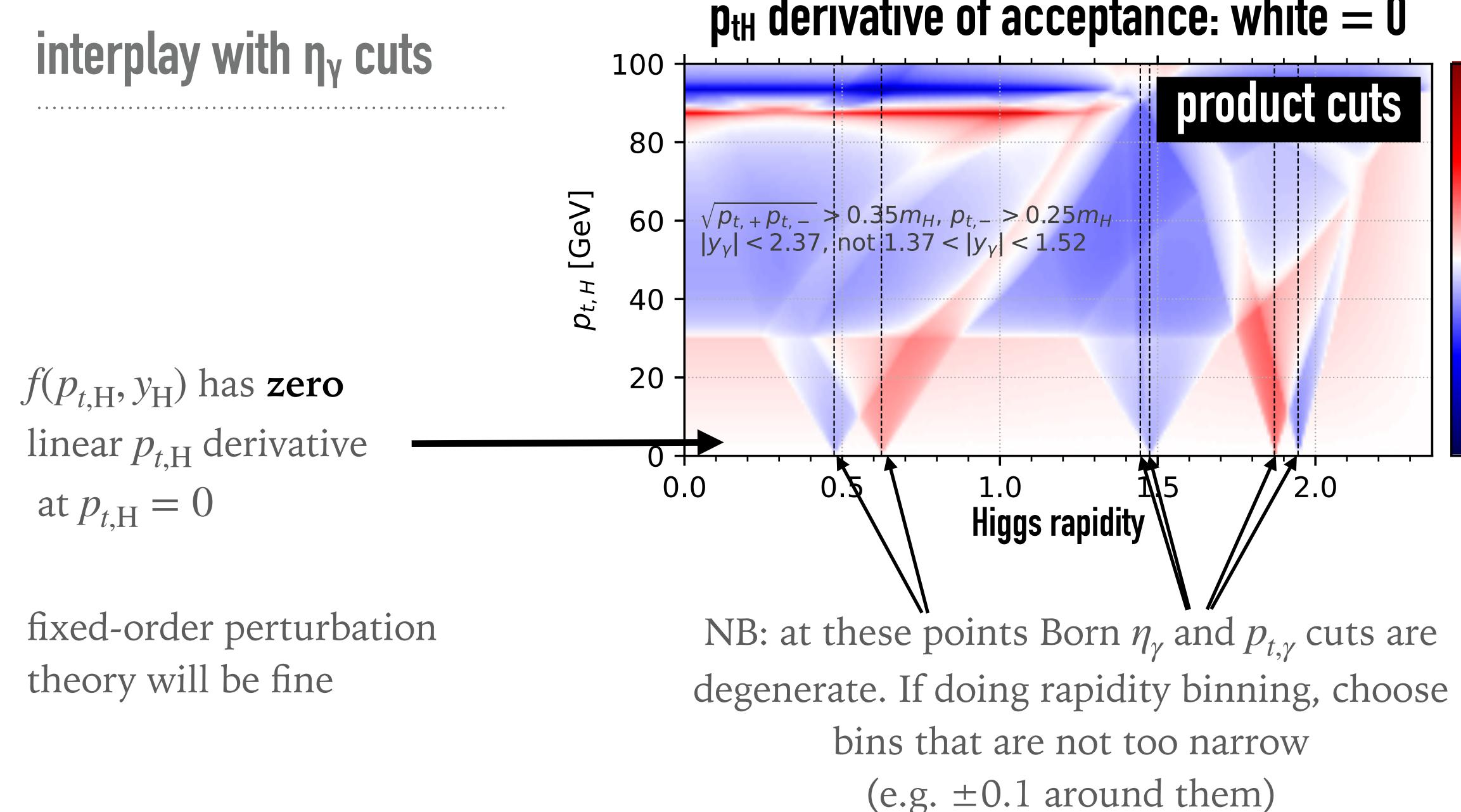
- fixed-order becomes insensitive to $p_{t,\mathrm{H}}$ values below a few GeV
- overall size of (non-Born part of) fiducial acceptance corrections much smaller
- resummation and fixed order agree at per-mil level



Gavin P. Salam

p_{tH} derivative of acceptance: white = 0

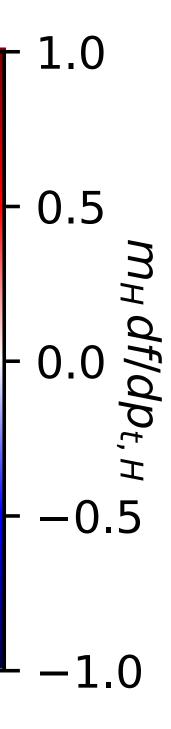




Gavin P. Salam

p_{tH} derivative of acceptance: white = 0

2-body cuts, Snowmass Energy Frontier Workshop



- Zero

N³LO

- MARCA Killer berturbation
- theory will be fine
- - 0.0

100

ð

80

40

- 20

$p_{\rm th}$ derivative of acceptance: white = 0

60-y, 23, 1002 1.37 < 1.52

0.5

Higgs rapidity

15

 \mathbf{X}

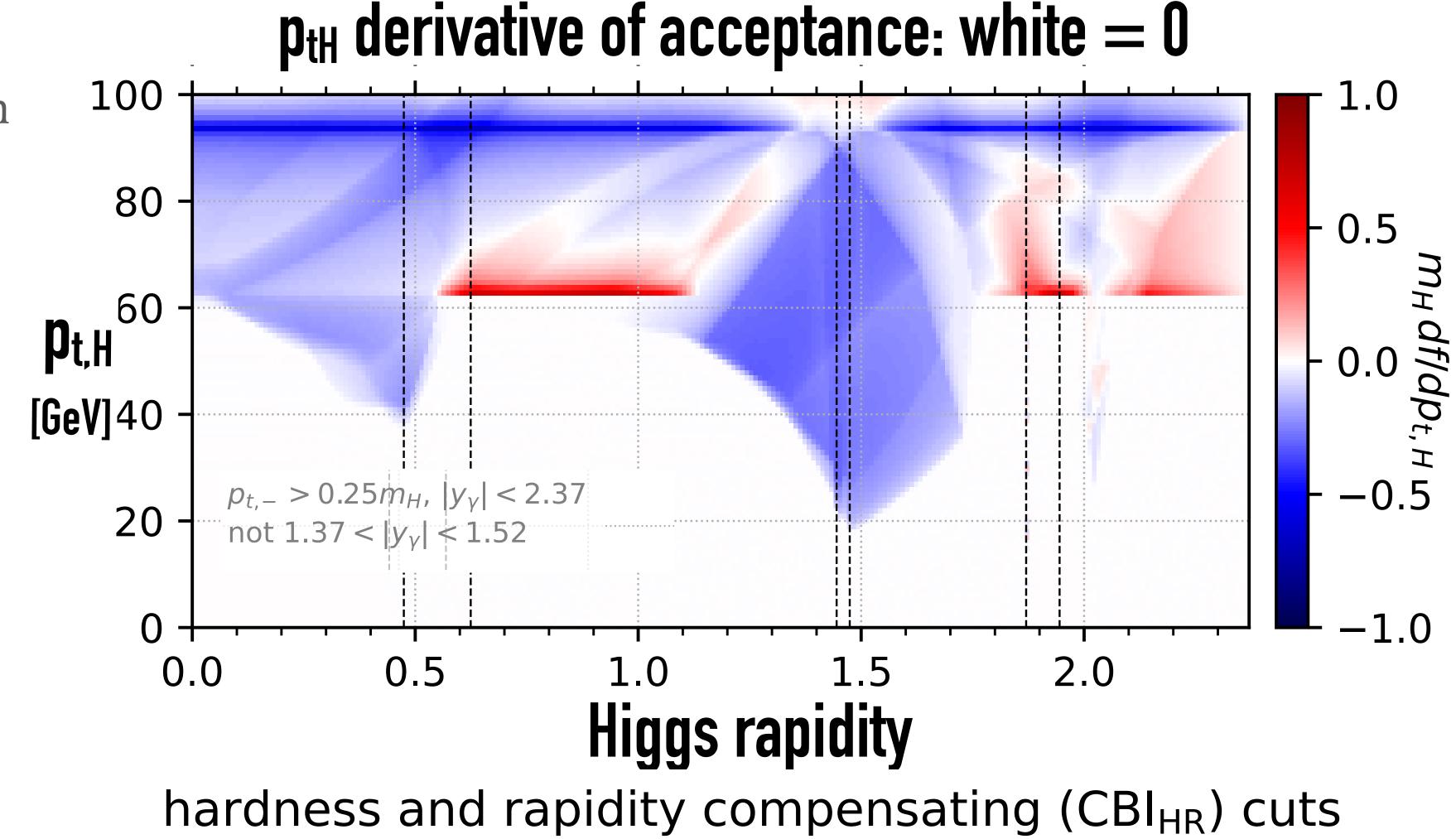
MMKO/

2.0

Huss et al preliminary @ Higgs 202

Solution #2b: design cuts whose acceptance is independent of pth (at small pth)

- ► keep standard cuts on softer photon p_t and on photon rapidities
- replace harder-photon pt cut with Collins-Soper angle cut (transverse boostinvariant)
- selectively loosen CS angle cut to keep p_{tH}independent acceptance as far as possible

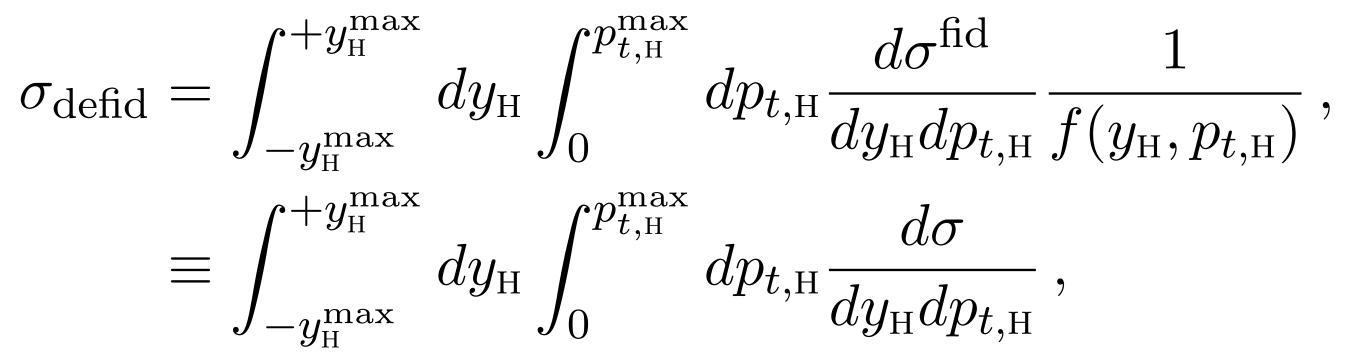


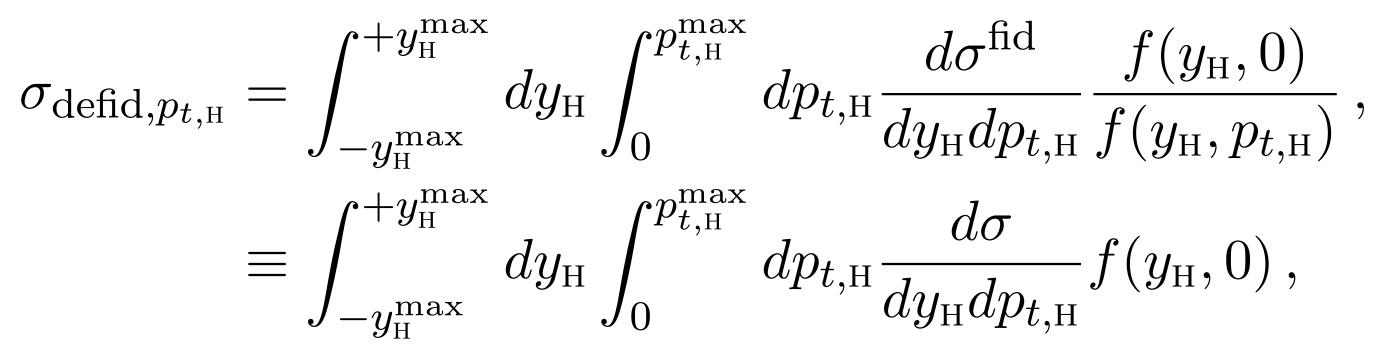
details in arXiv:2106.08329 + code at https://github.com/gavinsalam/two-body-cuts

Solution #3: defiducialise (cf. Glazov 2001.02933 for DY)

Option 3a: divide out both $p_{t,\mathrm{H}}$ and y_{H} dependence of acceptance from fiducial differential cross section

- > Option 3b: divide out just $p_{t,H}$ dependence of acceptance from fiducial differential cross section (adapted from suggestion by referee of paper)
- **NB2**: defiducialisation is theoretically robust for a scalar particle (in a way that it is not for DY) NB3: code at <u>https://github.com/gavinsalam/two-body-cuts</u> can also help with defiducialisation for Higgs





NB1: some care needed in choice of integration limits, to avoid division by zero (or, for 3a, by small numbers for $y_{\rm H} \gtrsim 2$)

2-body cuts, Snowmass Energy Frontier Workshop

Conclusions

- ► Fixed-order perturbation theory can be badly compromised by existing (2-body) cuts $(\rightarrow$ intriguing questions about asymptotics of QCD perturbative series)
- uncertainties)
- > A better long-term solution may be to revisit experimental cuts:
 - product and boost-invariant cuts give much better perturbative series
 - ► Likely relevant also for other processes (see backup for DY: effects at the 1%-level)
- Alternatively: in Higgs case, you can defiducialise
- perturbative effects.

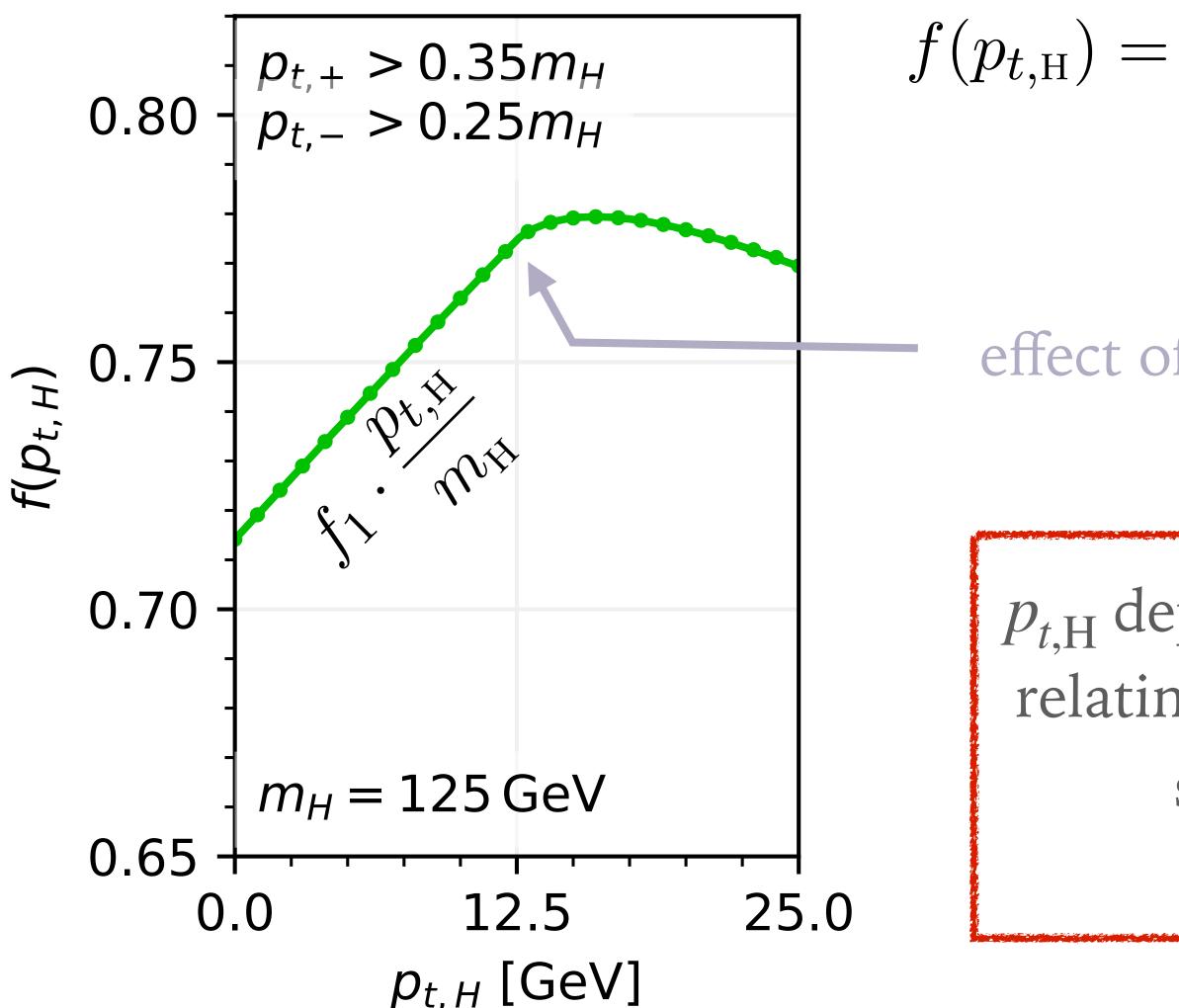
> In simple cases (e.g. $H \rightarrow \gamma \gamma$), can be solved by resummation. But physics will be more robust if we can reliably use both fixed-order and resummed+FO results (and both yield similar central values &

► Cuts with little p_{tH} dependence (or defiducialisation) may be useful also, e.g., for extrapolating measurements to STXS or more inclusive cross sections, with limited dependence on BSM or non-

> Needs addressing in future LHC measurements for robust accuracy in Run 3 & HL-LHC

Linear p_{tH} dependence of H acceptance, f(p_{tH})

Acceptance for $H \rightarrow \gamma \gamma$



$$f_0 + f_1 \cdot \frac{p_{t,\mathrm{H}}}{m_\mathrm{H}} + \mathcal{O}\left(\frac{p_{t,\mathrm{H}}^2}{m_\mathrm{H}^2}
ight)$$

See e.g. Frixione & Ridolfi '97 Ebert & Tackmann '19 idem + Michel & Stewart '20 Alekhin et al '20 f_0 and f_1 are coefficients whose values depend values of cuts

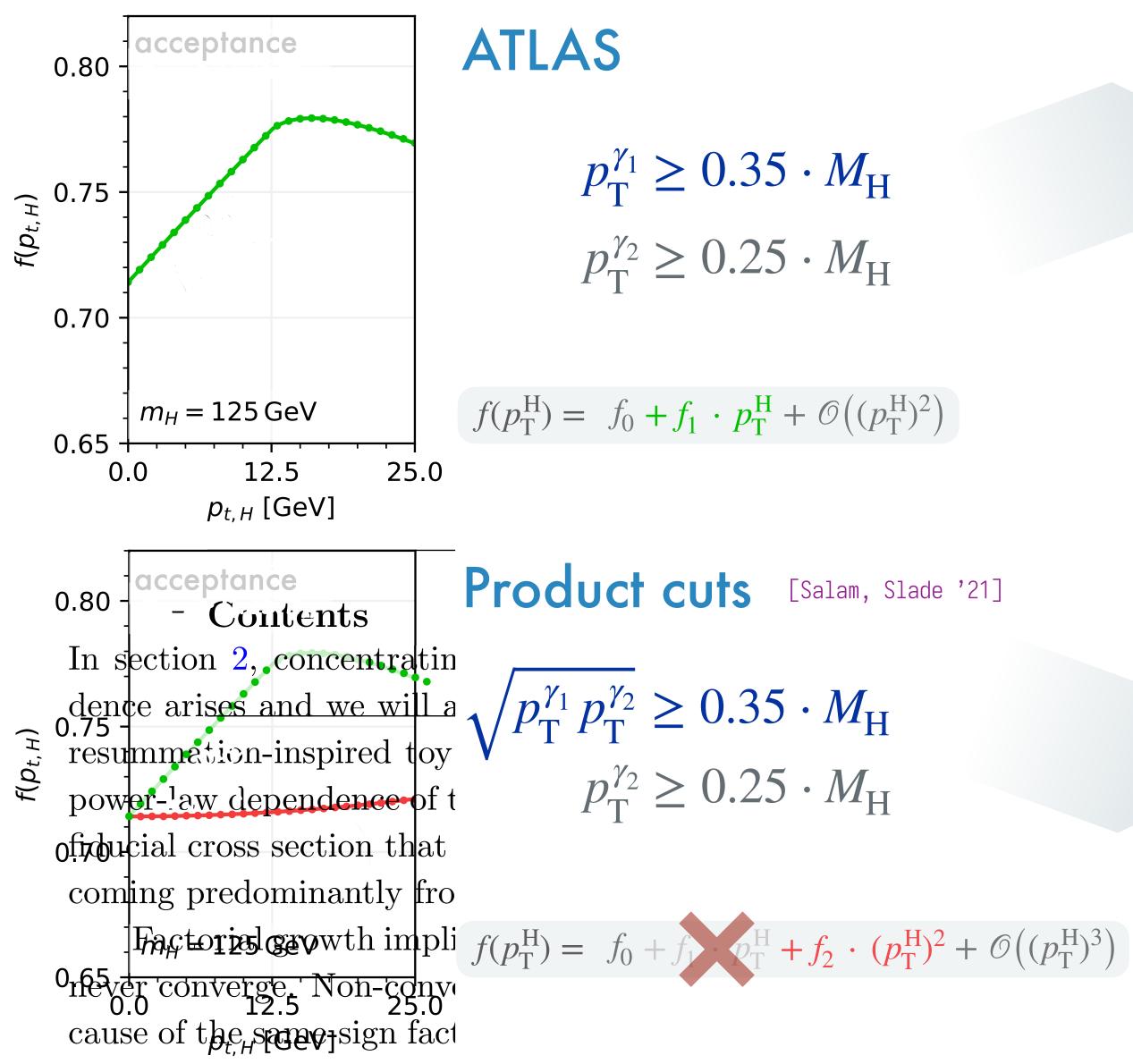
effect of p_{t-} cut sets in at $0.1m_{\rm H}$

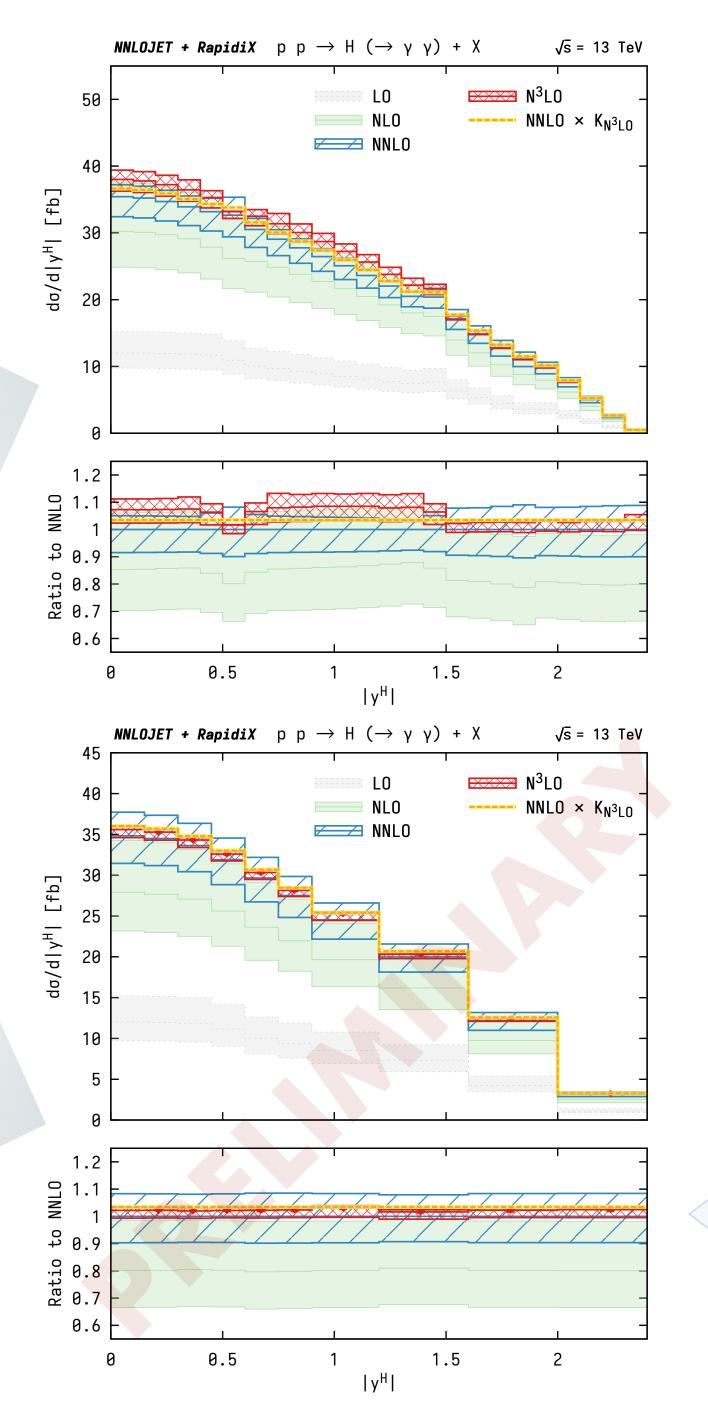
 $p_{t,H}$ dependence of acceptance (at 10% level) \rightarrow relating measured cross section and total cross section requires info about the $p_{t,H}$ distribution.

Cut Type	cuts on	small- $p_{t,H}$ dependence	f_n coefficient	$p_{t,\mathrm{H}}$ transition
symmetric	$p_{t,-}$	linear	$+2s_0/(\pi f_0)$	none
asymmetric	$p_{t,+}$	linear	$-2s_0/(\pi f_0)$	Δ
sum	$\frac{1}{2}(p_{t,-}+p_{t,+})$	quadratic	$(1+s_0^2)/(4f_0)$	2Δ
product	$\sqrt{p_{t,-} + p_{t,+}}$	quadratic	$s_0^2/(4f_0)$	2Δ
staggered	$p_{t,1}$	quadratic	$s_0^4/(4f_0^3)$	Δ
Collins-Soper	$p_{t,\mathrm{CS}}$	none		2Δ
CBI_H	$p_{t,\mathrm{CS}}$	none		$2\sqrt{2}\Delta$
rapidity	y_γ	quadratic	$f_0 s_0^2 / 2$	

Table 1: Summary of the main hardness cuts, the variable they cut on at small $p_{t,\mathrm{H}}$, and the small- $p_{t,\mathrm{H}}$ dependence of the acceptance. For linear cuts $f_n \equiv f_1$ multiplies $p_{t,\mathrm{H}}/m_{\mathrm{H}}$, while for quadratic cuts $f_n \equiv f_2$ multiplies $(p_{t,\mathrm{H}}/m_{\mathrm{H}})^2$ (in all cases there are additional higher order terms that are not shown). For a leading threshold of $p_{t,\mathrm{cut}}$, $s_0 = 2p_{t,\mathrm{cut}}/m_{\mathrm{H}}$ and $f_0 = \sqrt{1 - s_0^2}$, while for the rapidity cut $s_0 = 1/\cosh(y_{\mathrm{H}} - y_{\mathrm{cut}})$. For a cut on the softer lepton's transverse momentum of $p_{t,-} > p_{t,\mathrm{cut}} - \Delta$, the right-most column indicates the $p_{t,\mathrm{H}}$ value at which the $p_{t,-}$ cut starts to modify the behaviour of the acceptance (additional $\mathcal{O}(\Delta^2/m_{\mathrm{H}})$ corrections not shown). For the interplay between hardness and rapidity cuts, see sections 4.2, 4.3 and 5.2.

CUTS TO REMOVE THE IR SENSITIVITY





Alex Huss @ Higgs 2021

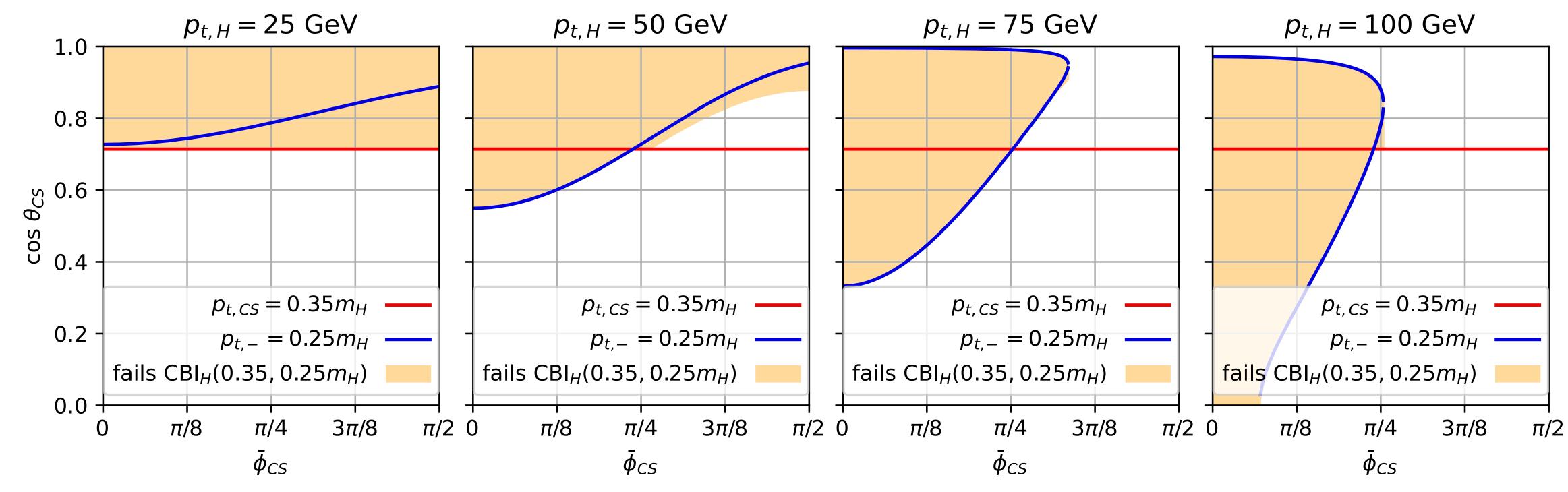
NNLO $\times K_{N^3LO}$ \approx N³LO • very flat no "features" robust (v.s. resummation)

Hardness [and rapidity] compensating boost invariant cuts (CBI_H and CBI_{HR})

Core idea 1: cut on decay p_t in Collins-Soper frame

$$\vec{p}_{t,\text{CS}} = \frac{1}{2} \left[\vec{\delta}_t + \frac{\vec{p}_{t,12} \cdot \vec{\delta}_t}{p_{t,12}^2} \left(\frac{m_{12}}{\sqrt{m_{12}^2 + p_{t,12}^2}} - 1 \right) \vec{p}_{t,12} \right], \qquad \vec{\delta}_t = \vec{p}_{t,1} - \vec{p}_{t,2}$$

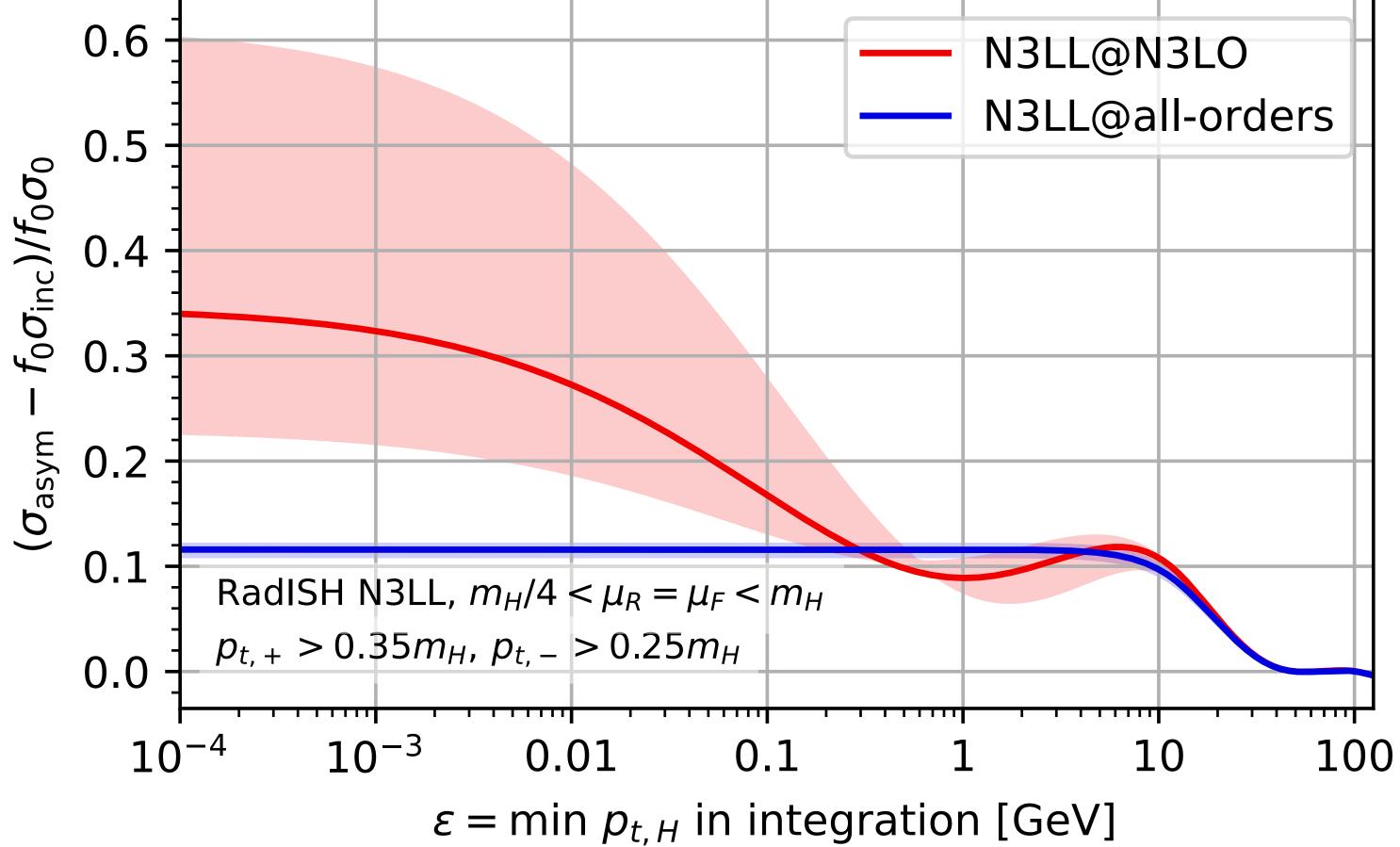
Core idea 2: relax $p_{t,CS}$ cut at higher $p_{t,H}$ values to maintain constant / maximal acceptance



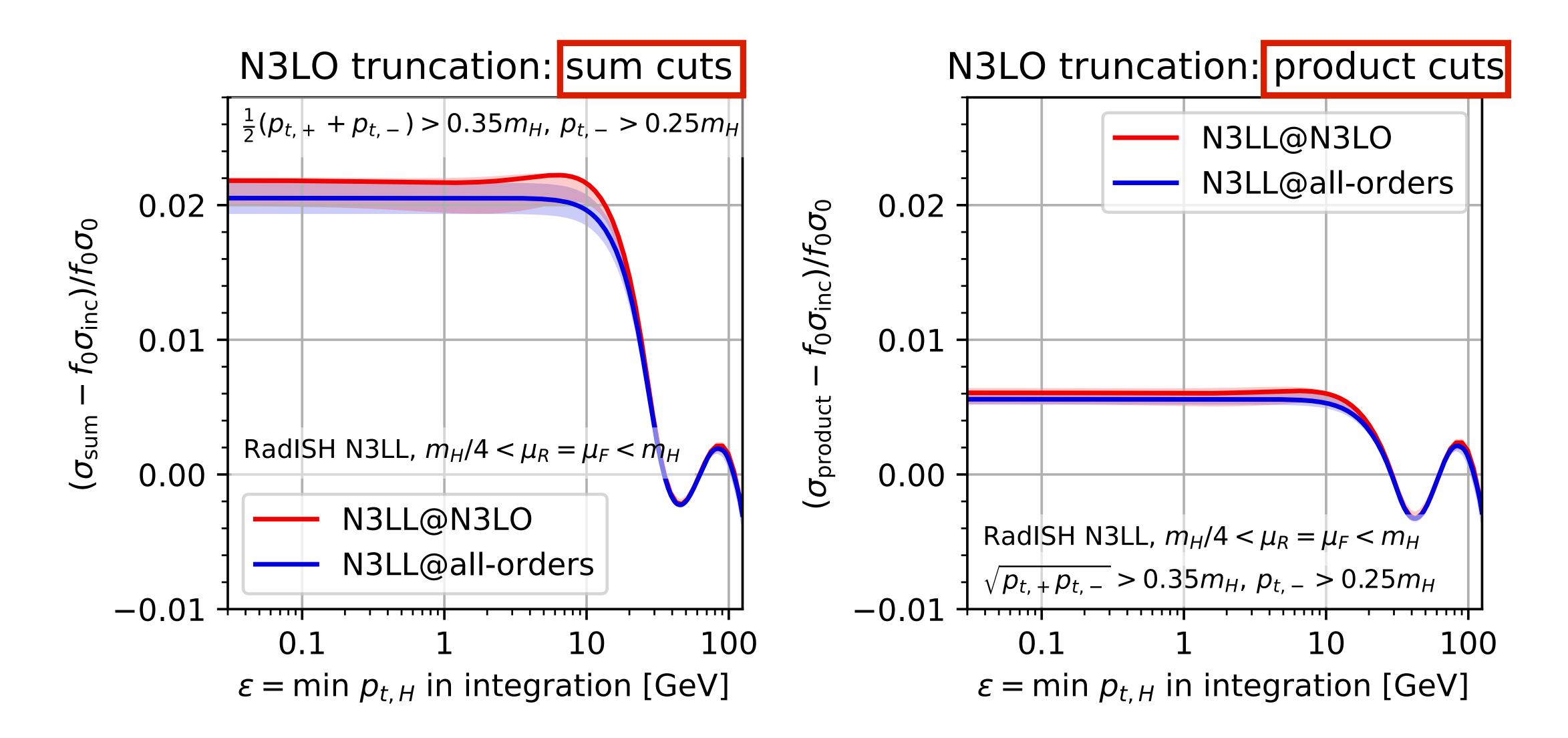
Gavin P. Salam

2-body cuts, Snowmass Energy Frontier Workshop

Sensitivity to low Higgs pt (and also scale bands): standard cuts

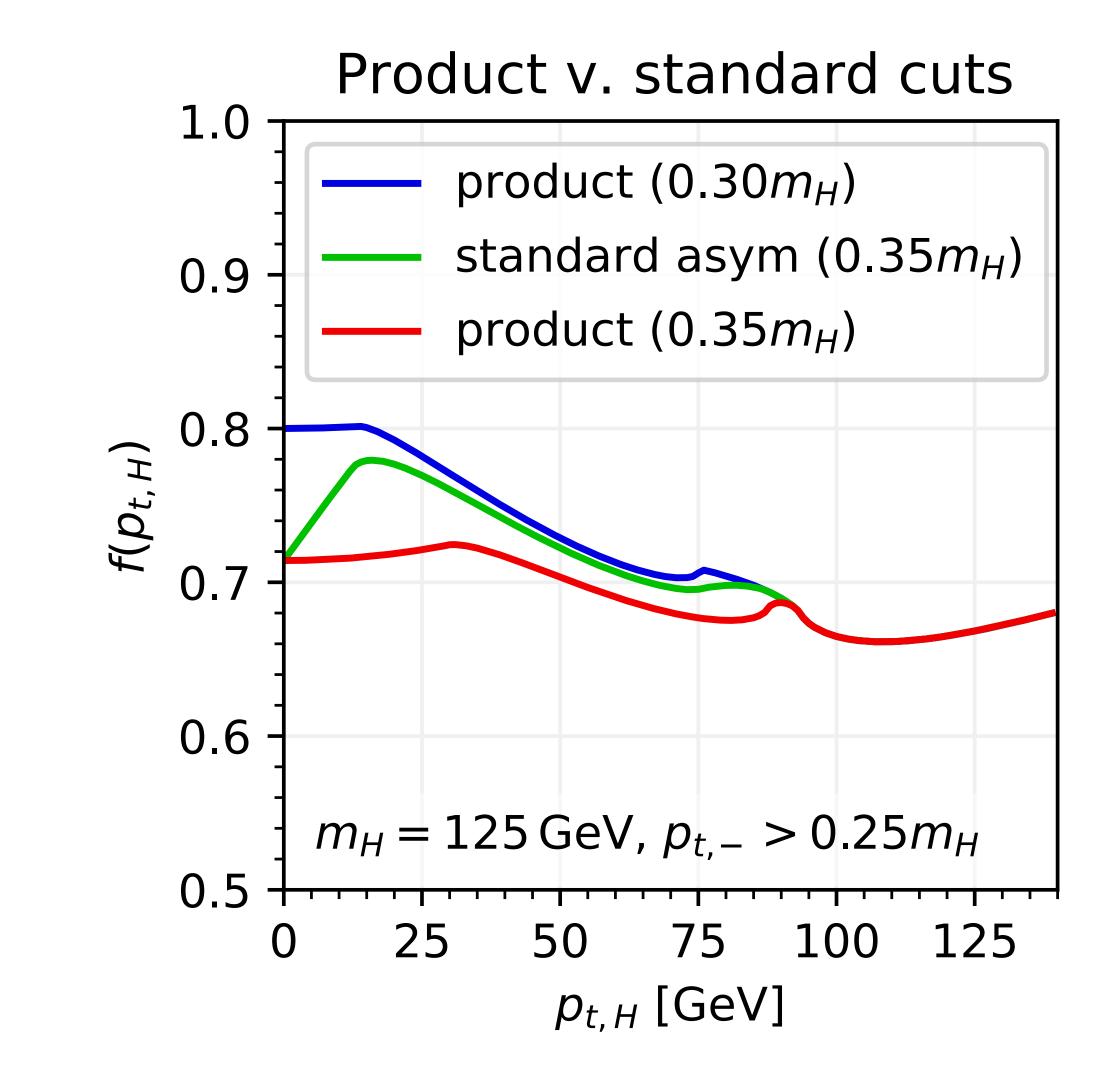


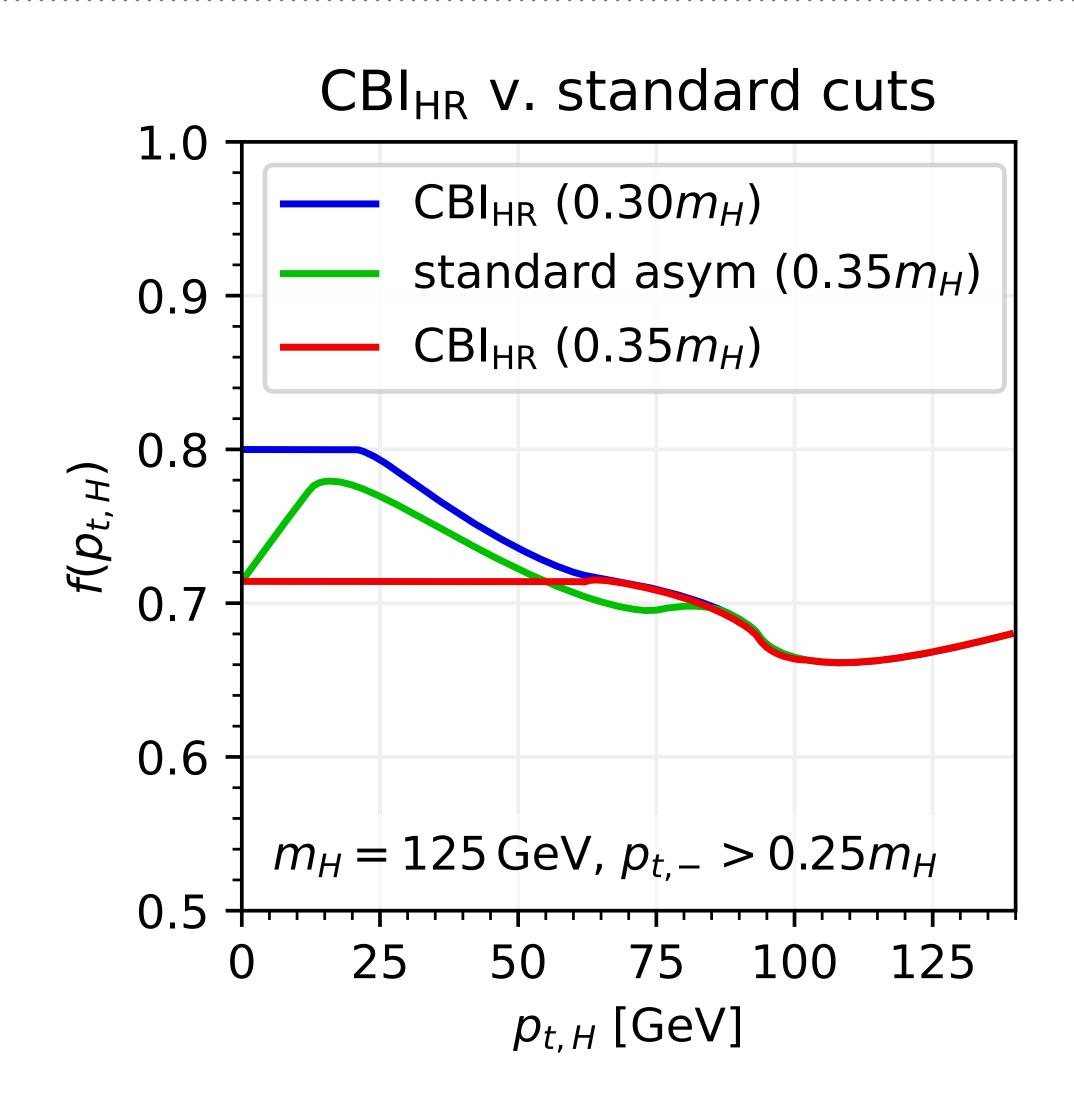
Sensitivity to low Higgs p_t (and also scale bands): sum & product cuts



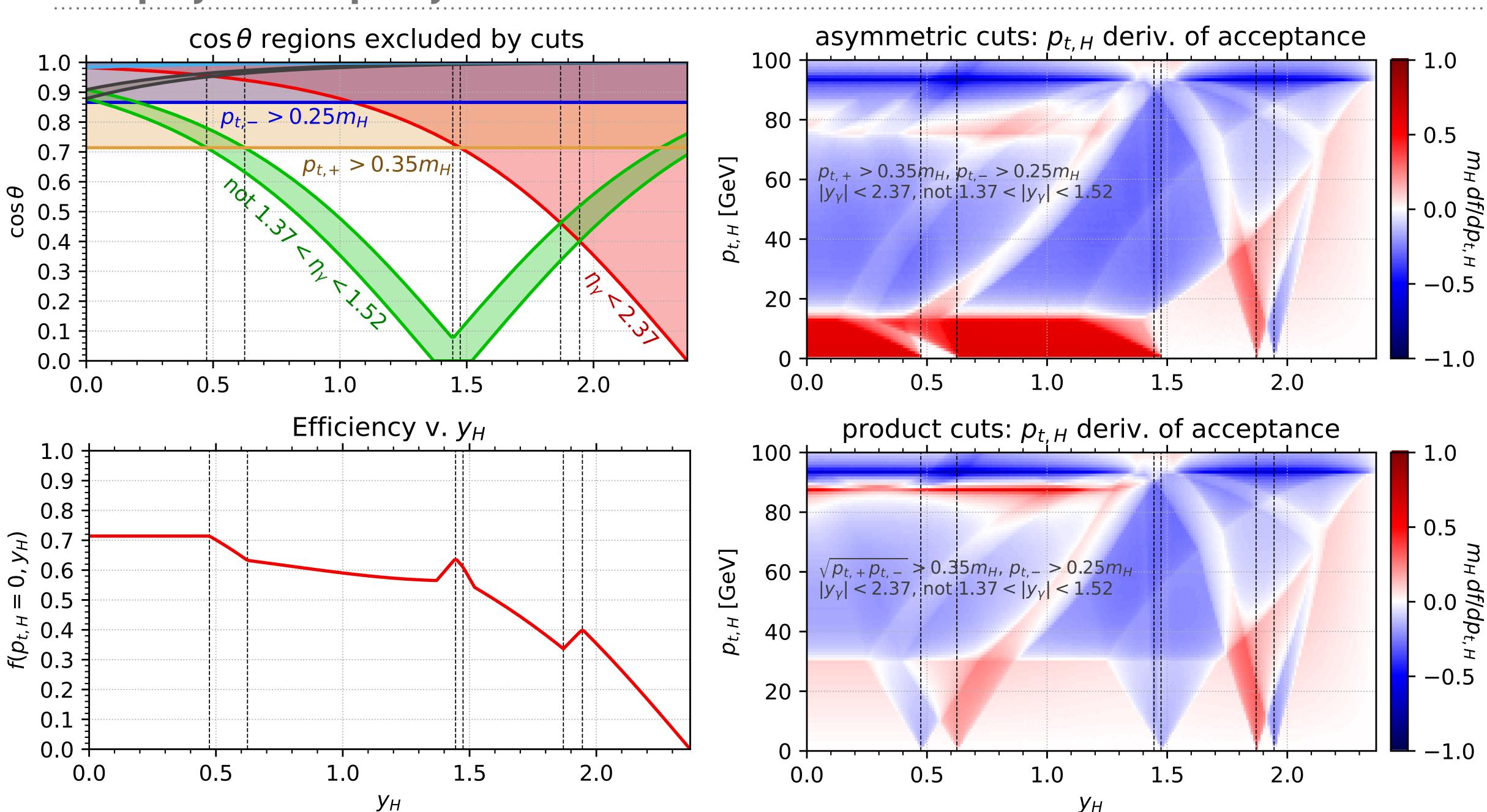
. . . .

Option of changing thresholds

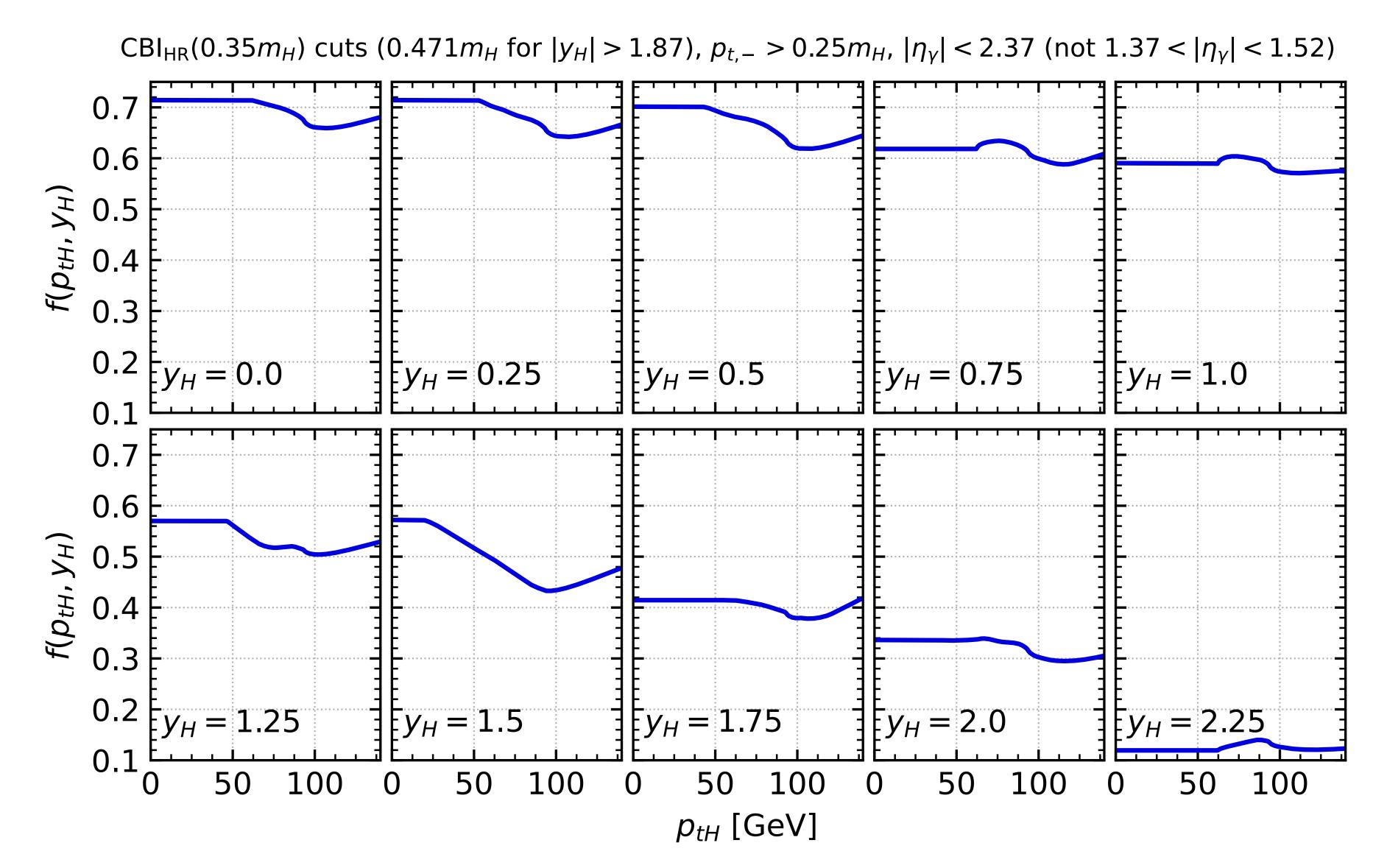




Interplay with rapidity cuts



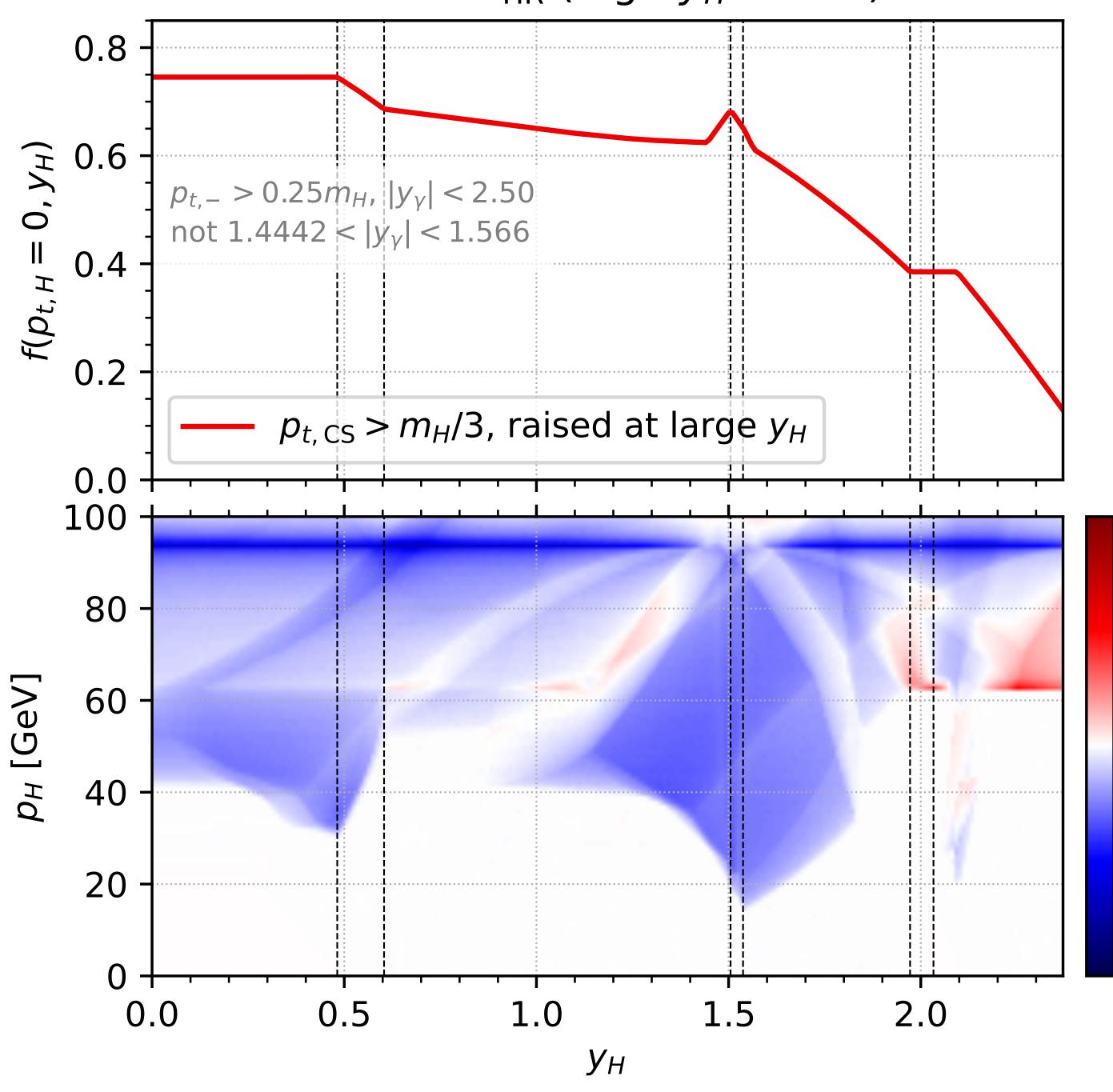
$\textbf{CBI}_{HR} \text{ cuts: acceptance v. } p_{tH} \text{ at several } y_{H} \text{ values}$



2-body cuts, Snowmass Energy Frontier Workshop

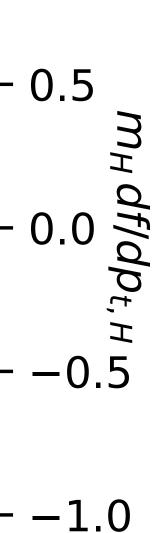
Gavin P. Salam

CBI_{HR} w. CMS rapidity cuts



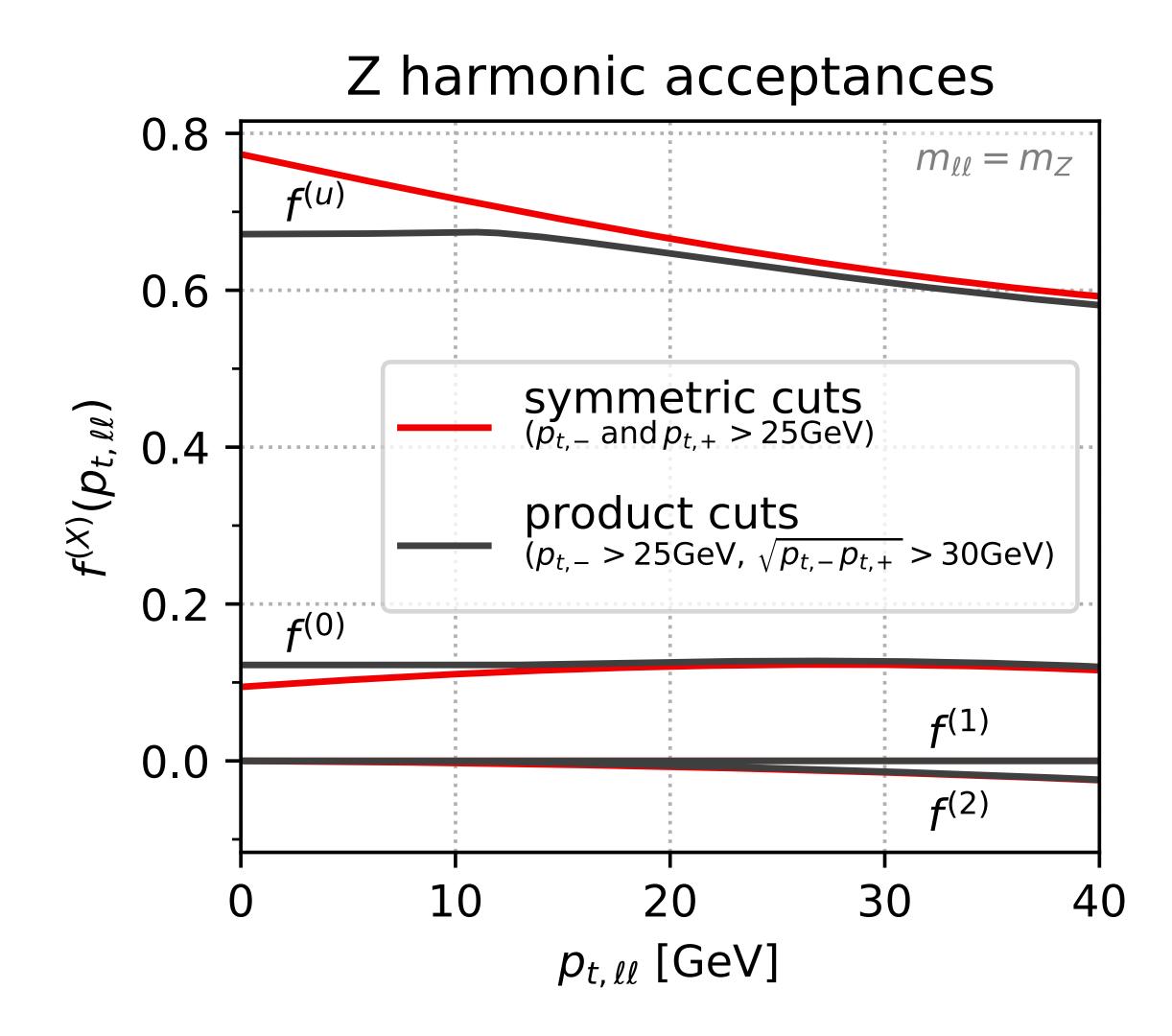
Gavin P. Salam

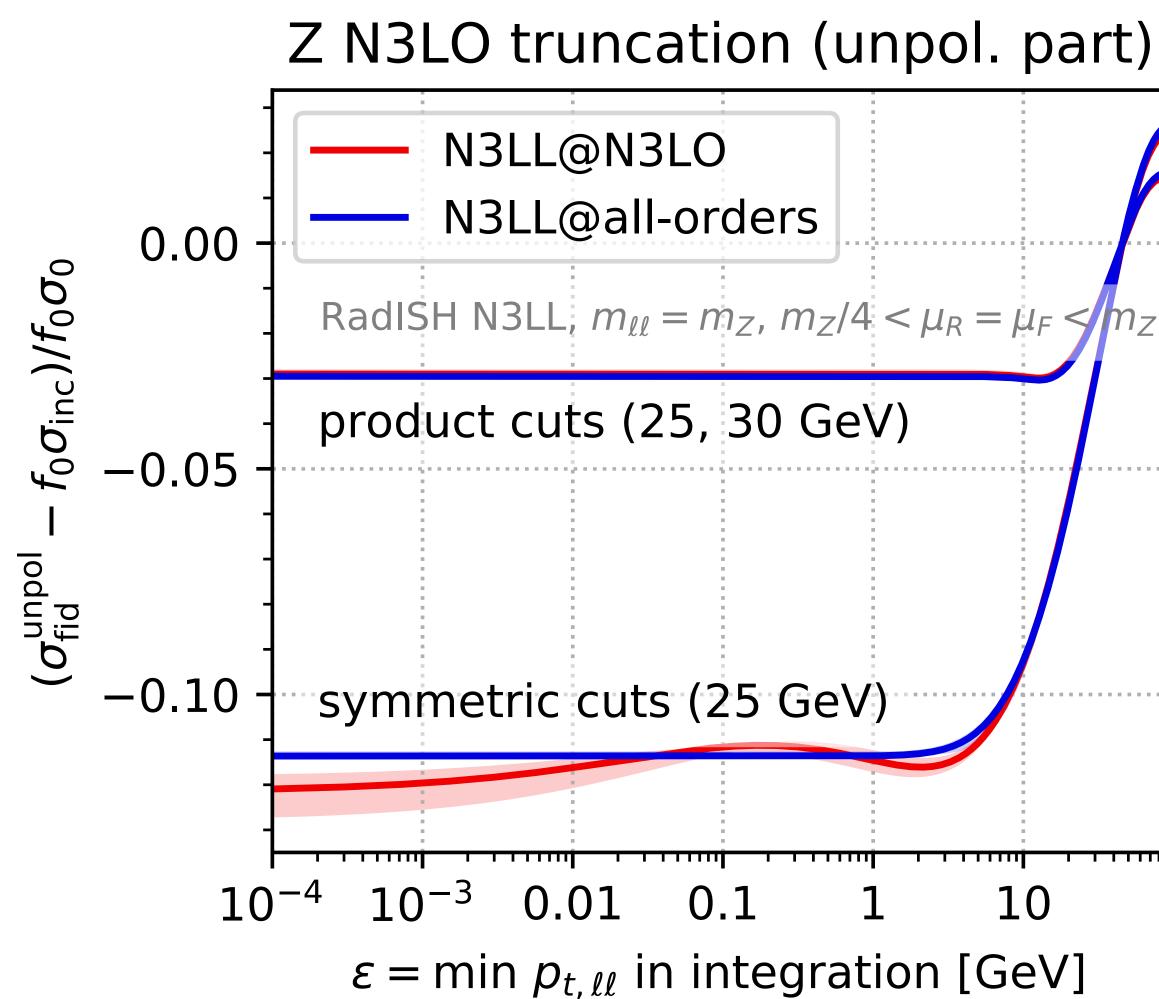
CMS CBI_{HR} (high-y_H raised)



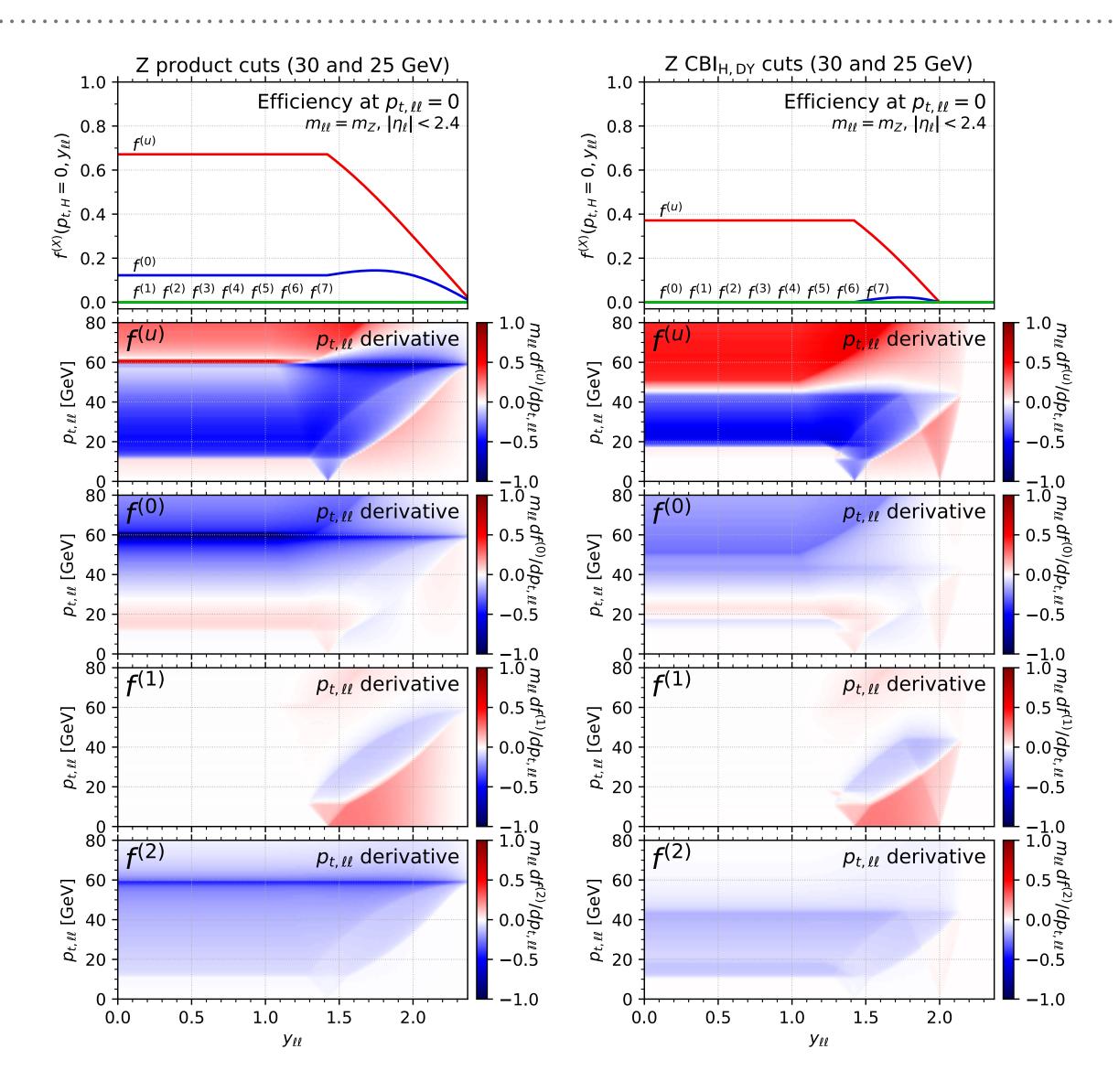
1.0

Example in Drell-Yan case





DY pt dependence of harmonic acceptances with product and boost invariant cuts



Gavin P. Salam

Getting identically zero pt dependence for all harmonic acceptances requires an extra cut

 $\cos\theta > \bar{c} = \frac{-c_0 + \sqrt{4} - \bar{3}c^2}{3c^2}$ 9

