ggF: experimental status

J. Langford for the WG1 ggF conveners

Imperial College London

The $18^{\rm th}$ workshop of the LHC HWG 1 Dec 2021

Introduction

- Summarise experimental landscape for ggF measurements
 - recent full Run 2 ggF results from ATLAS + CMS collaborations
 not everything, just a select few
 - highlight where theory input will be useful
 - aims for Run 3
- Wealth of data collected during Run 2 enabled many interesting analyses
 - measure kinematics of ggF production mode: differential/STXS
 - \blacktriangleright rare phase space regions e.g. boosted ggF(H ${\rightarrow}bb)$
 - using ggF to probe Higgs properties e.g. CP
- Related ggF talks during this workshop:
 - [theory update] from Stephen
 - STXS uncertainty scheme] from Haider

1/14

Inclusive ggF measurements

- Highest precision achieved by combining decay channels
 - [ATLAS-CONF-2021-053]: cross-section
 - [CMS-PAS-HIG-19-005]: signal-strength (theory uncertainties folded-in)
 - ► syst-limited measurements ⇒ requires analysis/theory improvements

Simplified template cross sections

- Divide inclusive phase space into simplified fiducial volumes (bins)
 - ▶ splittings to minimize theory dependence + isolate BSM-sensitive regions
 - \blacktriangleright no fiducial selection on decay products \Rightarrow useful for combination

STXS results

• Many ggF stage 1.2 bins measured: splittings in p_T^H , N_{iet} , m_{ii} , (p_T^{Hij})

- ▶ [JHEP 07 (2021) 027]: CMS $H \rightarrow \gamma \gamma$ analysis, no significant deviations from SM
- cross-sections vary by $\mathcal{O}(10^3)$, most dominated by stat. uncertaintly
- high p_T^H measurements approaching theory precision

J. Langford

ggF: experimental status

STXS results

• Many ggF stage 1.2 bins measured: splittings in p_T^H , N_{iet} , m_{ii} , (p_T^{Hij})

- ▶ [JHEP 07 (2021) 027]: CMS H→ $\gamma\gamma$ analysis, no significant deviations from SM
- cross-sections vary by $\mathcal{O}(10^3)$, most dominated by stat. uncertaintly
- high p_T^H measurements approaching theory precision

J. Langford

ggF: experimental status

STXS results

• Many ggF stage 1.2 bins measured: splittings in p_T^H , N_{jet} , m_{jj} , (p_T^{Hjj})

- [ATLAS-CONF-2021-053]: ATLAS STXS combination ($\gamma\gamma$, 4 ℓ , WW, $\tau\tau$, bb)
- excellent precision in rare phase space (e.g. $N_{jet} \ge 2$). Again SM holds true!
- Run 2 summary: building up an accurate, granular description of ggF production

STXS correlations

- [ATLAS-CONF-2021-053]: in general, correlations between ggF bins are small
 - larger correlations with some qqH (=VBF+VH had) bins
 - difficult to disentangle production modes with similar event topologies

High-ranking systematics

- Theoretical uncertainties dominate ggF signal-strength measurement
 - missing higher-order QCD terms
 - modelling of ggF kinematics in VBF phase space important for μ_{VBF}
- Parton shower now dominant th. unc in ggF cross-section measurement
 - ▶ worth investing time + effort in consistent scheme (and reducing!) PS uncertainties

	ggF + bbH	VBF
Uncertainty source	$\Delta \sigma [\%]$	$\Delta \sigma$ [%]
Underlying Event and Parton Shower (UEPS)	± 2.3	±10
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	$< \pm 1$	$< \pm 1$
Higher-Order QCD Terms (QCD)	± 1.6	$<\pm1$
Parton Distribution Function and α_S Scale (PDF+ α_S)	$< \pm 1$	± 1.1
Photon Energy Resolution (PER)	± 2.9	± 2.4
Photon Energy Scale (PES)	$< \pm 1$	$<\pm1$
Jet/E_T^{miss}	± 1.6	± 5.5
Photon Efficiency	± 2.5	± 2.3
Background Modeling	± 4.1	± 4.7
Flavor Tagging	$< \pm 1$	$<\pm1$
Leptons	$< \pm 1$	$<\pm1$
Pileup	± 1.8	± 2.7
Luminosity and Trigger	± 2.1	± 2.1
Higgs Boson Mass	$<\pm1$	$<\pm1$

ATLAS $H \rightarrow \gamma \gamma$

Differential cross-sections

- Fiducial selection on Higgs decay products to match experimental acceptance
 - more model-independent than STXS
 - ▶ use distribution to probe new physics, CP structure, precision SM calculations, ...
- [Submitted to Phys. Rev. Lett.]: CMS first differential measurement in au au decay
 - sensitivity particularly good in high p_T^H /high N_{jets} regions

Differential cross-sections

• Also target variables sensitive to Higgs CP e.g. $\Delta \phi_{
m jj}$

- [ATLAS-CONF-2019-029]: ATLAS $H \rightarrow \gamma \gamma$ differential analysis
- interpret as constraints on CP-nature of effective Hgg vertex

Probing Higgs CP with ggF + 2-jets

- Can also probe CP-structure of Hgg directly e.g. [CMS-PAS-HIG-20-007] (au au)
 - ► isolate VBF-like ggF+2j events \Rightarrow sensitive to CP
 - $\blacktriangleright \text{ MELA: } \mathcal{D}_{0-}^{\text{ggF}}: \text{ CP-odd vs CP-even ggF, } \mathcal{D}_{CP}^{\text{ggF}}: \text{ CP-odd/CP-even interference, } \mathcal{D}_{2jet}^{\text{VBF}}: \text{ ggF-vs-VBF}$
 - + neural network (\mathcal{D}_{NN}) separate VBF-like H signal from bkg
 - 4D binned template fit

Probing Higgs CP with ggF + 2-jets

$$f_{\rm a3}^{\rm ggF} = \frac{|a_3^{\rm gg}|^2}{|a_2^{\rm gg}|^2 + |a_3^{\rm gg}|^2} {\rm sgn} \Big(\frac{a_3^{\rm gg}}{a_2^{\rm gg}} \Big)$$

- fractional CP-odd contribution to total cross-section
- Combine with AC measurements in H \rightarrow 4 ℓ [Phys. Rev. D 104 052004 (2021)]

- Analysis selects events in tails of p_T^H : sensitive to quark mass effects
 - would benefit from NLO H+2jet samples with heavy quark mass effects (CP-odd)
 - ▶ [JHEP 08 (2016) 006], [arXiv:2110.06953]

Double-differential cross sections

• Sufficient statistics to measure d σ in two variables

- ▶ [Eur. Phys. J. C 80 (2020) 942]: ATLAS $H \rightarrow 4\ell$ differential analysis
- probe effects of <u>QCD resummation</u>!

Boosted ggF

- High p_T^H regime sensitive to possible new particles in ggF loop
 - utilise boosted $H \rightarrow bb$ to reach high p_T^H , tag fat jet consistent with two b quarks
 - CMS: [JHEP 12 (2020) 085], ATLAS: [ATLAS-CONF-2021-010]

Compared with (recent) state of the art theoretical calculations: [arXiv:2005.07762]

• CMS observe local significance of 2.6 σ in $p_T^H > 650$ GeV bin

J. Langford

Experimental plans/wishlist for Run 3

- Will perform ggF cross section measurements at 13.6 TeV
 - require updated theoretical predictions at new c.o.m energy
 - + can include recent advances:
 - \Rightarrow exact mixed QCD/EW corrections
 - \Rightarrow correct top-quark mass effects at NNLO
 - \Rightarrow newer PDFs
 - \Rightarrow N^3LO not based on threshold expansion
- STXS/differential measurements
 - ▶ targeting increasingly-difficult-to-model regions of phase space e.g. H+2jet
 - require state-of-the-art tools for simulation e.g. [MINNLOPS]
 - STXS uncertainty scheme (see <u>talk</u> by Haider)
- Improved PS modelling: now dominant theory unc. for ggF cross-sections
 - e.g. account for heavy quark masses in PS
 - also require consistent treatment of PS systematics

14/14