Multiscalar Final States in the TRSM

Gilberto Tetlalmatzi-Xolocotzi

Based on:

A. Papaefstathiou, T. Robens, GTX: 2101.00037/ JHEP 05 (2021) 193

> CPPS, Theoretische Physik 1, Universität Siegen

Two Real Singlet Extension of the SM TRSM

$$V(\Phi, \phi_i) = V_{SM}(\Phi) + V(\Phi, S, X)$$

1 \

Reduce the number of parameters by imposing $\mathbb{Z}_{2}^{S}: S \rightarrow -S, X \rightarrow X$ $\mathbb{Z}_{2}^{X}: S \rightarrow S, X \rightarrow -X$

$$V(\Phi, X, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \mu_{S}^{2} S^{2} + \lambda_{S} S^{4} \qquad S = (\phi_{S} + v_{S})/\sqrt{2}$$
$$+ \mu_{X}^{2} X^{2} + \lambda_{X} X^{4} + \lambda_{\Phi S} \Phi^{\dagger} \Phi X^{2} + \lambda_{SX} S^{2} X^{2} \qquad X = (\phi_{X} + v_{X})/\sqrt{2}$$

 $h_1 = h$ is the SM Higgs boson

$$M_1 = 125 GeV$$

Free independent parameters $M_{2,}M_{3,}\theta_{hS}$, θ_{hX} , θ_{SX} , v_{S} , v_{X}

Change to the physical basis

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\Theta_X, \Theta_S) \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}$$

Robens, Stefaniak, Wittbrodt: 1908.08554

Two Real Singlet Extension of the SM TRSM

$$V(\Phi, \phi_i) = V_{SM}(\Phi) + V(\Phi, S, X)$$

1 \

Reduce the number of parameters by imposing $\mathbb{Z}_{2}^{S}: S \rightarrow -S, X \rightarrow X$ $\mathbb{Z}_{2}^{X}: S \rightarrow S, X \rightarrow -X$

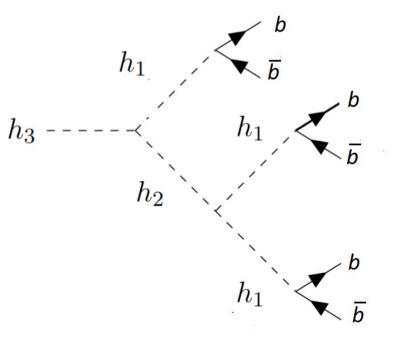
$$V(\Phi, X, S) = \mu_{\Phi}^{2} \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^{2} + \mu_{S}^{2} S^{2} + \lambda_{S} S^{4} \qquad S = (\phi_{S} + v_{S})/\sqrt{2}$$
$$+ \mu_{X}^{2} X^{2} + \lambda_{X} X^{4} + \lambda_{\Phi S} \Phi^{\dagger} \Phi X^{2} + \lambda_{SX} S^{2} X^{2} \qquad X = (\phi_{X} + v_{X})/\sqrt{2}$$

 $h_1 = h$ is the SM Higgs boson

$$M_1 = 125 GeV$$

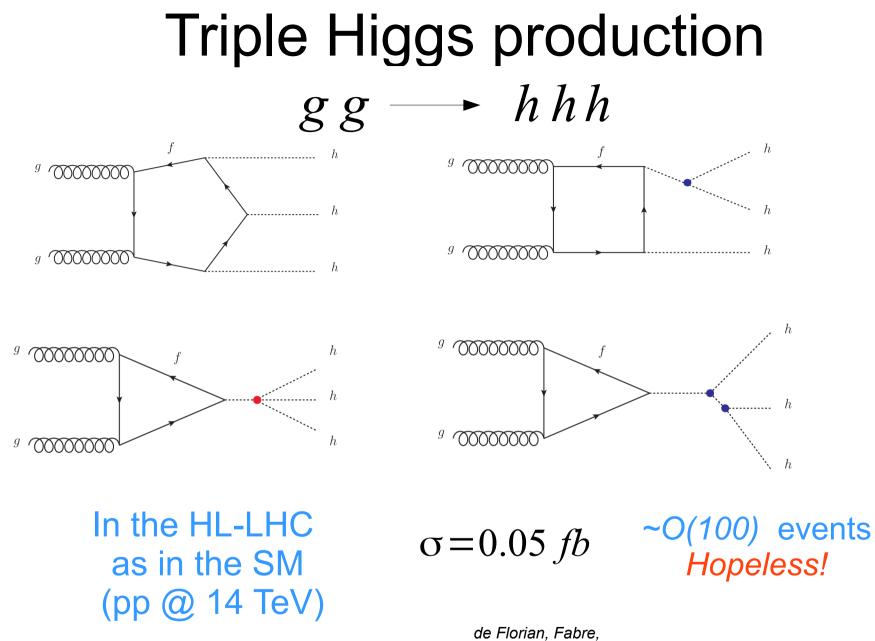
Free independent parameters $M_{2,}M_{3,}\theta_{hS}$, θ_{hX} , θ_{SX} , v_{S} , v_{X}

Change to the physical basis


$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\Theta_X, \Theta_S) \begin{pmatrix} \phi_h \\ \phi_S \\ \phi_X \end{pmatrix}$$

Robens, Stefaniak, Wittbrodt: 1908.08554

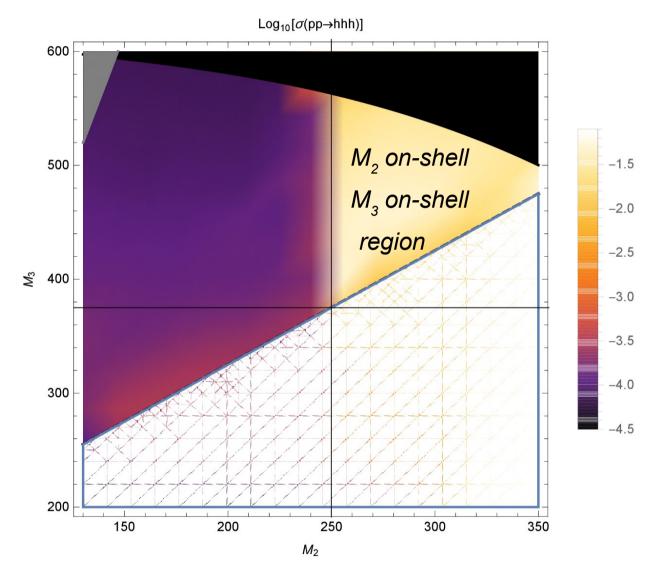
Benchmark Scenario of Study BP3


Here we focus in the BP3 Scenario introduced in 1908.08554 which allows for a large $h_1h_1h_1$ production while obeying current theoretical and experimental constraints.

Value			
$125.09~{\rm GeV}$			
$[125,\ 500]~{\rm GeV}$			
$[255,\ 650]~{\rm GeV}$			
-0.129			
0.226			
-0.899			
$140 { m GeV}$			
$100 { m ~GeV}$			

We consider the mass hierarchy

 $M_{1} < M_{2} < M_{3}$


Mazzitelli: 1912.02760

Within the TRSM it is possible to reach up to $\sigma = 50 fb$

Details on the study of the 6b final state

- Parton level events (signal/background) generated with MadGraph5_aMC@NLO.
- The main source of background is QCD-6b-Jets.
- The production of the 6b-final state is challenging, it was generated in the <u>Siegen computer cluster</u> using the gridpack option available in MadGraph5_aMC@NLO.
- Parton shower and non-perturbative effects included with <u>Herwig 7</u>.
- The <u>analysis was performed using the Herwig package HwSim</u>. [*Papaefsathiou*, https://bitbucket.org/andreasp/hwsim]

Production cross section

The X-Section can reach up to 50 fb for $M_2 \sim (263, 280)$ GeV and $M_3 \sim 450$ GeV

Cross sections per Benchmark point

Label	(M_2, M_3)	$\sigma(pp \to h_1 h_1 h_1)$	$\sigma(pp\to 3b\bar{b})$
	$[{ m GeV}]$	[fb]	[fb]
Α	(255, 504)	32.40	6.40
в	(263, 455)	50.36	9.95
\mathbf{C}	(287, 502)	39.61	7.82
D	(290, 454)	49.00	9.68
\mathbf{E}	(320, 503)	35.88	7.09
\mathbf{F}	(264, 504)	37.67	7.44
G	(280, 455)	51.00	10.07
\mathbf{H}	(300, 475)	43.92	8.68
Ι	(310, 500)	37.90	7.49
J	(280, 500)	40.26	7.95

For a QCD 6 b-quarks induced final state the SM background amounts to

 $\sigma = 6.38 \, pb$

Selection Analysis

- Require <u>6 b-tagged jets</u>
- Construct all the possible combinations of 3-pairs of b-jets: J Do something analogous for all the combinations of 2-pairs: I
- For each combinations I and J calculate the observables

$$\chi^{2,(4)} = \sum_{qr \in I} (M_{qr} - m_h)^2 \qquad \chi^{2,(6)} = \sum_{qr \in J} (M_{qr} - m_h)^2$$

• Our best candidates to Higgs bosons are defined in terms of the pairings that minimize

$$S = \chi_{min}^{2,(4)} + \chi_{min}^{2,(6)}$$

Results

Label	(M_2, M_3)	$\varepsilon_{\mathrm{Sig.}}$	$S _{300 fb^{-1}}$	$\varepsilon_{ m Bkg.}$	$\mathbf{B} _{300 \mathrm{fb}^{-1}}$	$\mathrm{sig} _{\mathrm{300 fb}^{-1}}$	$\mathrm{sig} _{\mathrm{3000 fb}^{-1}}$
	[GeV]						
\mathbf{A}	(255, 504)	0.025	14.12	8.50×10^{-4}	19.16	2.92	9.23
\mathbf{B}	(263, 455)	0.019	17.03	3.60×10^{-5}	8.11	4.78	15.11
\mathbf{C}	(287, 502)	0.030	20.71	9.13×10^{-5}	20.60	4.01	12.68
\mathbf{D}	(290, 454)	0.044	37.32	1.96×10^{-4}	44.19	5.02	15.86
\mathbf{E}	(320, 503)	0.051	32.54	2.73×10^{-4}	61.55	3.76	11.88
\mathbf{F}	(264, 504)	0.028	18.18	9.13×10^{-5}	20.60	3.56	11.27
\mathbf{G}	(280, 455)	0.044	38.70	1.96×10^{-4}	44.19	5.18	16.39
\mathbf{H}	(300, 475)	0.054	41.27	2.95×10^{-4}	66.46	4.64	14.68
Ι	(310, 500)	0.063	41.42	3.97×10^{-4}	89.59	4.09	12.94
J	(280, 500)	0.029	20.67	9.14×10^{-5}	20.60	4.00	12.65

Analyses performed for different points in the $M_2 - M_3$ (on-shell, on-shell) region

Closing Remarks

- The TRSM extends the SM with two scalar singlets and imposes two discrete symmetries to reduce the parameter space.
- The TRSM leads to interesting phenomenological predictions which can be tested at the HL-LHC including enhancements in Triple Higgs production.
- Triple Higgs production $h_1h_1h_1$ as in the SM cannot be probed at the LHC due to its tiny cross section.
- The 6b jet final state is a good candidate to look for the TRSM (BP3) through triple Higgs production in the HL-LHC.

THANK YOU!