SMEFT in the light of recent Higgs measurements

Eleni Vryonidou

LHCHWG meeting Online 1/12/21

Outline

- * Operator sets and their impact on Higgs observables
- * Connection between the Higgs and top sectors in SMEFT
- * Impact of Higgs measurements on recent global fit results
- * Impact of theory variations in global fits

Eleni Vryonidou

SMEFT operators

Bosonic

$\mathcal{O}_{\phi G}$	OpG	$\left(\phi^{\dagger}\phi - \frac{v^2}{2} ight)G^{\mu u}_A G^A_{\mu u}$	$\mathcal{O}_{\phi B}$	OpB	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)B^{\mu\nu}B_{\mu\nu}$
$\mathcal{O}_{\phi W}$	0pW	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)W_{I}^{\mu u}W_{\mu u}^{I}$	$\mathcal{O}_{\phi WB}$	OpWB	$(\phi^{\dagger} au_{I} \phi) B^{\mu u} W^{I}_{\mu u}$
$\mathcal{O}_{\phi d}$	Opd	$\partial_\mu (\phi^\dagger \phi) \partial^\mu (\phi^\dagger \phi)$	$\mathcal{O}_{\phi D}$	OpD	$(\phi^{\dagger}D^{\mu}\phi)^{\dagger}(\phi^{\dagger}D_{\mu}\phi)$

2-fermion

$\mathcal{O}_{t \varphi}$	Otp	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\phi} + \text{h.c.}$	\mathcal{O}_{tG}	OtG	$igs\left(\bar{Q}\tau^{\mu\nu}T_{A}t\right)\tilde{\phi}G^{A}_{\mu\nu}$ + h.c.
\mathcal{O}_{barphi}	Obp	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}b\phi + \text{h.c.}$	$\mathcal{O}_{c \varphi}$	Оср	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}c\phi + \text{h.c.}$
$\mathcal{O}_{ au arphi}$	Otap	$\left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)\bar{Q}\tau\tilde{\phi} + \text{h.c.}$	\mathcal{O}_{tW}	OtW	$i(\bar{Q}\tau^{\mu\nu}\tau_I t) \tilde{\phi} W^I_{\mu\nu} + \text{h.c.}$
\mathcal{O}_{tB}	-	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\phi}B_{\mu\nu}$ + h.c.	\mathcal{O}_{tZ}	OtZ	$-\sin\theta_W \mathcal{O}_{tB} + \cos\theta_W \mathcal{O}_{tW}$
$\mathcal{O}^{(1)}_{_{\varphi l_1}}$	Opl1	$i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\bar{l}_1 \gamma^{\mu} l_1)$	$\mathcal{O}^{(3)}_{arphi l_1}$	03pl1	$i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \phi)(\overline{l}_{1} \gamma^{\mu} \tau^{I} l_{1})$
$\mathcal{O}^{(1)}_{\varphi l_2}$	0p12	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi) (ar{l}_2 \gamma^\mu l_2)$	$\mathcal{O}^{(3)}_{arphi l_2}$	03p12	$i(\phi^\dagger \overleftrightarrow{D}_\mu au_I \phi) (ar{l}_2 \gamma^\mu au^I l_2)$
$\mathcal{O}^{(1)}_{_{\varphi l_3}}$	Op13	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi) (ar{l}_3 \gamma^\mu l_3)$	$\mathcal{O}^{(3)}_{arphi l_3}$	03p13	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(ar{l}_{3}\gamma^{\mu} au^{I}l_{3})$
$\mathcal{O}_{arphi e}$	Ope	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\overline{e}\gamma^\mue)$	$\mathcal{O}_{arphi\mu}$	Opmu	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{\mu} \gamma^\mu \mu)$
$\mathcal{O}_{arphi au}$	Opta	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{ au} \gamma^\mu au)$			
$\mathcal{O}^{(1)}_{arphi q_i}$	-	$\sum_{i=1,2} i(\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi)(\bar{q}_i \gamma^{\mu} q_i)$	$\mathcal{O}^{(3)}_{arphi q_i}$	03pq	$\sum_{i=1,2} i (\phi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{I} \phi) (\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{i})$
$\mathcal{O}^{(1)}_{\varphi Q}$	-	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{Q} \gamma^\mu Q)$	$\mathcal{O}^{(3)}_{\varphi Q}$	03pQ3	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{Q}\gamma^{\mu} au^{I}Q)$
$\mathcal{O}^{(-)}_{\varphi q_i}$	OpqMi	$\mathcal{O}^{(1)}_{arphi q_i} - \mathcal{O}^{(3)}_{arphi q_i}$	$\mathcal{O}_{arphi Q}^{(-)}$	OpQM	$\mathcal{O}^{(1)}_{arphi Q} - \mathcal{O}^{(3)}_{arphi Q}$
$\mathcal{O}_{\varphi u_{i}}$	Opui	$\sum_{i=1,2} i (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) (\bar{u}_{i} \gamma^{\mu} u_{i})$	$\mathcal{O}_{arphi d_i}$	Opdi	$\sum_{i=1,2} i (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) (\bar{d}_{i} \gamma^{\mu} d_{i})$
$\mathcal{O}_{\phi t}$	Opt	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi) (ar{t} \gamma^\mu t)$			
\mathcal{O}_u	011	$(l\gamma_{\mu}l)(l\gamma^{\mu}l)$			

Eleni Vryonidou

4-quark (involving top-quarks)

$O^{1,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})$	$O^{1,1}_{Qq} = (\bar{Q}\gamma_\mu Q)(\bar{q}_i\gamma^\mu q_i)$
$O_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i})$	$O_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i})$
$O_{tu}^8 = (\bar{t}\gamma_\mu T^A t)(\bar{u}_i\gamma^\mu T^A u_i)$	$O^1_{tu} = (ar t \gamma_\mu t) (ar u_i \gamma^\mu u_i)$
$O_{td}^8 = (\bar{t}\gamma^{\mu}T^A t)(\bar{d}_i\gamma_{\mu}T^A d_i)$	$O_{td}^1 = (\bar{t}\gamma^\mu t)(\bar{d}_i\gamma_\mu d_i) ;$
$O_{Qu}^8 = (\bar{Q}\gamma^\mu T^A Q)(\bar{u}_i \gamma_\mu T^A u_i)$	$O^1_{Qu} = (\bar{Q}\gamma^\mu Q)(\bar{u}_i\gamma_\mu u_i)$
$O_{Qd}^8 = (\bar{Q}\gamma^{\mu}T^AQ)(\bar{d}_i\gamma_{\mu}T^Ad_i)$	$O_{Qd}^1 = (\bar{Q}\gamma^\mu Q)(\bar{d}_i\gamma_\mu d_i)$
$O_{tq}^8 = (\bar{q}_i \gamma^\mu T^A q_i) (\bar{t} \gamma_\mu T^A t)$	$O^1_{tq} = (\bar{q}_i \gamma^\mu q_i)(\bar{t}\gamma_\mu t) ;$

4-quark operators entering tt,ttH,ttV Typical flavour scenarios:

- Flavour Universal
 - U(3)_L x U(3)_e x U(3)_Q x U(3)_u x U(3)_d
- Singling out the top (arXiv:1802.07237)
 - U(3)_L x U(3)_e x U(2)_Q x U(2)_u x U(3)_d

How do all these operators enter?

Eleni Vryonidou

Impact of operators on STXS bins Example: Gluon fusion

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779 Eleni Vryonidou

Xiv:2012.02779 LHCWG meeting 1/12/21

Top-Higgs interplay beyond ggH

Top EW couplings

 $O_{\varphi Q}^{(3)} = \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi\right) \left(\bar{Q} \gamma^{\mu} \tau^{I} Q\right)$ $O_{\varphi Q}^{(1)} = \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) \left(\bar{Q} \gamma^{\mu} Q\right)$ $O_{\varphi t} = \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi\right) \left(\bar{t} \gamma^{\mu} t\right)$ $O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^I t)\tilde{\varphi}W^I_{\mu\nu}$ $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$

Eleni Vryonidou

LHCWG meeting 1/12/21

Constraints from top fits are not very stringent A clear motivation for top+Higgs fits

Extended top-Higgs interplay Operators

$$\begin{split} O_{\varphi Q}^{(3)} &= \left(\varphi^{\dagger} \overleftarrow{D}_{\mu}^{I} \varphi\right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= \left(\varphi^{\dagger} \overleftarrow{D}_{\mu} \varphi\right) (\bar{t} \gamma^{\mu} t) \\ O_{tW} &= \left(\bar{Q} \sigma^{\mu\nu} \tau^{I} t\right) \tilde{\varphi} W_{\mu\nu}^{I} \\ O_{tB} &= \left(\bar{Q} \sigma^{\mu\nu} t\right) \tilde{\varphi} B_{\mu\nu} \\ O_{tG} &= g_{s} (\bar{Q} \sigma^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A} , \\ O_{t\phi} &= \left(\phi^{\dagger} \phi\right) (\bar{Q} t) \tilde{\phi} \\ O_{\phi G} &= \left(\phi^{\dagger} \phi\right) G_{\mu\nu}^{A} G^{A\mu\nu} \end{split}$$

Eleni Vryonidou

SMEFT global fits What is currently used? **SMEFit**

Dataset		$\sqrt{s}, \; \mathcal{L}$	Info	Observables	$n_{ m dat}$	Ref.	
			_	aa F. VBF. $Vh. t\bar{t}h$			
ATLAS_CMS	EW precision observables						$n_{\mathbf{obs}}$
ATLAS S	Precision electroweak measurements on the Z resonance.						12
	$\Gamma_{Z}, \sigma_{\text{had.}}^{0}, R_{\ell}^{0}, A_{FB}^{\ell}, A_{\ell}(\text{SLD}), A_{\ell}(\text{Pt}), R_{b}^{0}, R_{c}^{0}, A_{FB}^{b}, A_{FB}^{c}, A_{b} \& A_{c}$						
ATLAS_SS	Combination of CDF and D0 W-Boson Mass Measurements						1
	LHC run 1 W boson mass measurement by ATLAS						1
CMS_SSi	Diboson LEP & LHC						$n_{\mathbf{obs}}$
	W^+W^- angular distribution measurements at LEP II.						8
CMC II 1	W^+W^- total cross section measurements at L3 in the $\ell\nu\ell\nu$, $\ell\nu qq$ & $qqqq$						24
CM2_H_1	final states for 8 energies						
	W^+W^- total cross section measurements at OPAL in the $\ell\nu\ell\nu$, $\ell\nu qq$ &					&	21
ΔΤΙΔς σσΕ	qqqq final states for 7 energies						
AILEO_661	W^+W^- total cross section measurements at ALEPH in the $\ell\nu\ell\nu$, $\ell\nu qq$						21
	$\underline{\qquad}$ & $qqqq$ final states for 8 energies						
	ATLAS $W^+ W^-$ differential cross section in the $e\nu\mu\nu$ channel, $\frac{d\sigma}{dp_e^T}$,						1
ATLAS_Vh	$p_T > 120 \text{ GeV}$ overflow bin						
	ATLAS W^+W^- fiducial differential cross section in the $e\nu\mu\nu$ channel,					el,	14
ATLAS_gg	$\frac{d\sigma}{dp_{\ell_{\star}}^T}$						
CMS_ggF	ATLAS Zjj	fiducial differential	cross sect	ion in the $\ell^+\ell^-$ chann	el, $\frac{d\sigma}{d\Delta\varphi}$, ii	12
		•					

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Eleni Vryonidou

LHCWG meeting 1/12/21

Ref.

[<mark>6</mark>]

[57]

Ref.

[5]

[3]

[4]

[2]

[225]

[58]

[<mark>60</mark>]

FitMaker

LHC Run 1 Higgs	$n_{\mathbf{obs}}$			
ATLAS and CMS LHC Run 1 combination of Higgs signal strengths.				
Production: ggF , VBF , ZH , WH & ttH				
Decay: $\gamma\gamma$, ZZ, W ⁺ W ⁻ , $\tau^+\tau^-$ & $b\bar{b}$				
ATLAS inclusive $Z\gamma$ signal strength measurement	1			
LHC Run 2 Higgs (new)	$n_{\mathbf{obs}}$			
ATLAS combination of signal strengths and stage 1.0 STXS in $H \rightarrow 4\ell$	16 19 2			
including ratios of branching fractions to $\gamma\gamma$, WW^* , $\tau^+\tau^- \& b\bar{b}$				
Signal strengths coarse STXS bins fine STXS bins				
CMS LHC combination of Higgs signal strengths.	23			
Production: ggF , VBF , ZH , WH & ttH				
Decay: $\gamma\gamma$, ZZ, W ⁺ W ⁻ , $\tau^+\tau^-$, $b\bar{b} \& \mu^+\mu^-$				
CMS stage 1.0 STXS measurements for $H \to \gamma \gamma$.	13 7			
13 parameter fit 7 parameter fit				
CMS stage 1.0 STXS measurements for $H \to \tau^+ \tau^-$	9			
CMS stage 1.1 STXS measurements for $H \to 4\ell$	19			
CMS differential cross section measurements of inclusive Higgs produc-	5 6			
tion in the $WW^* \to \ell \nu \ell \nu$ final state.	·			
$\frac{d\sigma}{dn_{\rm jet}} \mid \frac{d\sigma}{dp_H^T}$				
ATLAS $H \to Z\gamma$ signal strength.	1			
ATLAS $H \to \mu^+ \mu^-$ signal strength.	1			

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Dependence of predictions on operators How to quantify the sensitivity to operators?

, onidou

LHCWG meeting 1/12/21

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Fisher information table: takes into account the experimental precision LHCWG meeting 1/12/21

Eleni Vryonidou

Higgs and top interplay

Ellis, Madigan, Mimasu, Sanz, You arXiv:2012.02779

Top-Higgs measurements break the degeneracy between operators LHCWG meeting 1/12/21 Eleni Vryonidou

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Breaking degeneracies using loops

Eleni Vryonidou

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006 LHCWG meeting 1/12/21

Higgs vs global fit What happens if we try to fit everything with Higgs?

Combination of top and Higgs needed

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

LHCWG meeting 1/12/21

Eleni Vryonidou

4F unconstrained

ttV couplings poorly constructed

Chromomagnetic, ggh & Yukawa need input from top

HVV operators not affected

Global fit results Top vs Global Fit

Higgs data improves certain top operator bounds

Ethier, Magni, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

LHCWG meeting 1/12/21

Eleni Vryonidou

Impact of STXS measurements Where do Higgs differential measurements help?

Eleni Vryonidou

LHCWG meeting 1/12/21

STXS crucial for disentangling: ggH and Yukawa operators

Impact of quadratic terms in global fits

***** Higher Orders in 1/Λ⁴

* squared dim-6 contributions

Posterior distributions

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Eleni Vryonidou

Significant impact for most operators in particular 4-fermion operators

Impact of NLO corrections Quadratic fits:

Posterior distributions

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

Eleni Vryonidou

Significant impact of NLO for some operators

LHCWG meeting 1/12/21

Future prospects

- * Use more data: Several full Run II analyses not included in fits yet
 - * Other measurements beyond SS and STXS?
- * Explore more 1-loop dependences
- * Add more processes: e.g. off-shell Higgs, di-Higgs

