General information &

Feedback from the US-MDP

Newcomers in the CERN Team

Christian Scheuerlein: Staff, material scientist.

Thermo-mechanical characterization, irradiation programme.

Barthi Verma: Fellow, chemist.

Characterization of adhesion strength of impregnation systems.

Parameters to explore: configuration, geometry, materials (copper, stainless steel, polyimide, glass fabrics, mica) as a function of the impregnation resin.

I also remind

Sébastien Clément

Staff, plastic technologist. In charge of the operation of the polymer lab.

Irradiation programme

We intend to explore the radiation ageing (thermo-mechanical and dielectric properties) of different impregnation resins as a function of irradiation type, dose, and environment (air, vacuum, low temperatures). We are preparing the programme, which we intend to present and discuss in a next meeting.

News from the US-MDP Meeting (1-5 March)

Evolution of the US Magnet Development Program

- The formation was initiated by DOE-OHEP as a response to the last Snowmass and P5 process
- •The Updated Roadmap for MDP is publicly available
 - o https://arxiv.org/abs/2011.09539

Overview of the US Magnet Development Program

1

News from the US-MDP Meeting (1-5 March)

From Tengming Shen, LBNL 2019

Name	Description
CTD-101K	Baseline anhydride-cured epoxy resin used in HEP magnets
CTD-103K2	Long pot life 2-part formulation with performance similar to CTD- 101K
CTD-103LT	Lightly toughened version of CTD-103K2
CTD-155	Anhydride-cured epoxy resin with reactive rubber toughener
CTD-7.1E	Low viscosity, toughened amine-cured epoxy resin
CTD-701X	Extremely low viscosity, tough polyolefin resin system

A rather unfortunate truth: Even the high toughness epoxy with large elongation at break at RT becomes brittle at <77 K

The resin tested is a variant of the ATLAS ECT.

- Compression tests of NHMFL-mix 61, CTD-101K were given by Theo Tervoort at ICMC 2019.
- Plenty of evidence of NHMFL-mix61 cracking at 4 K given by Nb₃Sn CCT subscale magnets and CCT5 (systematic microscopy images by Diego Arbelaez).

Recent studies at LBNL (Tengming Shen)

- Since 2020, LBNL has been collaborating with Fermilab (S. Krave) and CTD (A. Haight) to test and verify new resin developed with subscale CCT magnets, partly supported by DOE - SBIR.
- We have been running three independent studies at LBNL:
 - Developing approach of preparing epoxy/filler suitable for superconducting magnets, especially epoxy nanocomposite.
 - Explore the possibility of high toughness, or high thermoconductivity (more for HTS), and high specific heat epoxy, and processing parameters.

This presentation.

Disclaimer: It is an academic excise. Methods used have no connections to work at industry (CTD).

Preparation of the Epoxy Nanocomposite

Our Preparation Process To avoid agglomeration and sediment Remove acetone Sonic treatment 2h BNNS in acetone Good Sediment Solution used by us: Dispersion Supersonic treatment Centrifugal mixing Adding fumed filler

Design of Epoxy Composite with High Thermoconductivity

High thermoconductivity fillers

Electrical insulation fillers with high thermoconductivity at low temperature[1-3]

Epoxy resin: CTD 528

- Low Toxicity
- · Long Pot-Life
- Low Viscosity, <1000 cP @ 25 °C
- Excellent adhesion to fibers and fillers

Filler shapes can make a big difference.

[1] Bagrets N., Otten S., Weiss K. P., et al. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils[C]. IOP Conference Series: Materials Science and

Engineering OF Publishing, 2013.
[2] Lake Shore Cryotionics Inc. Appendix I: Cryogenic reference tables[EB/OL], https://www.lakeshore.com/docs/default-source/product-downloads/literature/list_appendixi_Lpdf
[3] Sichel E. K. Miller R. E. Abrahams M. S. et al. Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride(JI. Physical Review B. 1976 13/10):4607-4611.

Filler shapes can make a big difference. We have tried several fillers.

BNmp

(Boron nitride micro particle)

- · Single-crystal filler
- Plate shape
- Mean particle size 45um

Fillers we tried

Sapphire

BNnp (Boron nitride nanoparticle)

Diameter 70-80nm

BNnf

(Boron nitride nanoflake)

Lateral size 500-600nm

Thermal conductivity (W/(m·K))

Enhancement of thermoconductivity

BNnf > BNmp > BNnp

Driving technical questions:

- 1. How do magnet materials directly affect magnet training and performance?
- 2. How can magnet materials be designed to facilitate improved magnet performance?
- 3. Can improved processes lead to more cost effective and robust magnet designs?

Tasks	Rationales	FY20 Q1/Q2	FY20 Q3/Q4	FY21	FY22
1. Thermoplastics	Pros: High toughness and high radiation toughness Cons: (1) High viscosity and high processing temperature	Materials properties assessment: (1) CTE; (2) Shrinkage during cure.	Materials properties assessment: (3) Compression modulus and strength. (4) Shear strength.	Decision point: Testing Thermoplastics on CCT Nb ₃ Sn subscale magnet (SM)?	
2. High toughness	Investigate high toughness epoxy system besides NHMFL mix-61. Support small business to develop and verify new products. Supplement funding from SBIR.	Engage CTD materials testing			Decision
resins with CTD		Cable and CCT mandrel fabrications	Testing CTD701x (not an epoxy) on CCT Nb ₃ Sn SM		point: Down selections and testing the best formulation on large size magnets. Radiation
				Testing second formulation on CCT Nb ₃ Sn SM	
				Testing third formulation on CCT Nb ₃ Sn SM	tests.

Still exciting but no <u>hands</u> on time to complete work

Good progress here, ready to impregnate CCT with 701X

Tasks	Rationales	FY20 Q1/Q2	FY20 Q3/Q4	FY21	FY22
3. High specific heat, low CTE Gd ₂ O ₃ nanoparticles filled epoxy	Stress management for epoxy, especially those neat resin areas between strands within Rutherford cables.	Ten turn 3D- printed CCT mandrel potting tests.	Decision point: Testing this approach on CCT Nb ₃ Sn subscale magnet (SM)?		
4. Understand epoxy failure with advanced diagnostics	Understanding characteristic events, feeding into modeling and machine learning models	 Four cable stack short beam shear. S-2/fiber epoxy short beam shear. 	S-2/fiber epoxy compression/shear		
5. Improve epoxy resin and Nb ₃ Sn QA/QC and processing controls	Understand impacts such as temperature gradient, shelf life, and moisture control etc. on properties of epoxy.	Effects of curing temperature on compression properties and $T_{\rm g}$ etc.	Effects of moisture control	Effects of shelf lives of epoxy components.	
6. Nb ₃ Sn Rutherford cable Insulation materials	What are alternative insulation systems and how will they affect quench training?				

Some progress at LBNL, not enough resources to complete work

Useful data and understanding, not used in ML models

Data from AUP project, exciting info

- Epoxy is the glue that holds everything together
 - It also appears to be key in magnet training
- FNAL, LBNL, and CTD are working to develop new insulation systems to allow for higher performance magnets
- There are several knobs available:
 - Cp, CTE, Fracture toughness, bond strength, modulus, elongation, surface treatments, radiation stability, etc
 - These knobs change response to the disturbance spectrum as well as the disturbance spectrum itself, perhaps in difficult to correlate ways

We have measured a handful of candidate resins in collaboration with CTD

- CTD 155 and 153, toughened epoxy resins
- CTD 701 Thermoset polyolefin, extremely tough

LBNL will impregnate a subscale CCT with the 701 system in the near future

Coming up: Filled CTD 155

Ongoing work

- We have a set of washed cable to test, but it was rather stuck to the curing mold
- We are considering fracture toughness measurements of the QXF cable insulation interface
 - Fracture Toughness for composite laminates D5528
- Above work suggests debonding of pole-coil interface is desired
 - Interface treatments, shear testing

ini

Recent studies at CTD (Andrea Haight)

Composite Technology Development, Inc.

A world-leader in advanced material systems and solutions for challenging environments

Insulation Development for High Energy Physics Magnets

DOE Phase II SBIR Grant DE-SC0018701

Andrea Haight March 4, 2021

Program Goal:

Address long magnet training cycles through insulation optimization

- Optimization of high strain and thermally conductive insulation options
- Stack testing for screening options
- Subscale CCT magnet fabrication & testing

Phase I Toughened Resin Systems

Name	Description	$\mathbf{I}_{\mathbf{g}}$, °C (tan δ)	Viscosity @ 60°C (cP)	
			Initial	7 hours
CTD-101K	Baseline anhydride-cured epoxy resin	150 (avg QA)	70	100
CTD-103K2	Long pot life 2-part formulation similar to CTD-101K	141	61	61.5 (4.5 hr)
CTD-103LT	Lightly toughened version of CTD-103K2	126	24	71
CTD-155	Anhydride-cured epoxy resin with reactive rubber toughener	147	125	127
CTD-701X	Extremely low viscosity, tough polyolefin resin system	131	25 (@ 25°C)	70 (90 min, 25°C)

72

225

formulation showed rapid viscosity increase at 2hr (25°C)

Approx. 2 hr

Catalyst change
 allowed a significant
 increase in potlife
 – heat required to
 initiate cure

Thermal Shock and Energy Release - FNAL

6

- Both CTD-155 and CTD-701X are improved over CTD-101K
- CTD-701X has fewer cracking events over larger displacement

Thermal Shock Summary						
	Lot #	Sample #	Sample Type	1st Crack Cycle	1st Crack Severity (1-3)	Total Cycles
CTD-101K	1	1	Bolt	1	2	10
CTD-101K	1	2	Bolt	1	2	10
CTD-155	1	1	Bolt	1	2	10
CTD-155	1	2	Bolt	1	2	10
CTD-155	2	1	Bolt	1	2	10
CTD-155	2	2	Bolt	1	2	10
CTD-153	1	1	Bolt	1	3	7
CTD-153	1	2	Bolt	1	3	9
CTD-701X	4	1	Bolt	NA	NA	10
CTD-701X	4	2	Bolt	NA	NA	10
CTD-701X	4	3	Bolt	NA	NA	10
CTD-701X	4	4	Bolt	NA	NA	10
CTD-701X	4	5	Bolt	6	1	10
CTD-701X	4	6	Bolt	NA	NA	10

CTD-701X selected for first subscale
CCT magnet

CTD-155GN Evaluation

- Most promising Phase I filler added to CTD-155 (a toughened resin)
 - 35 vol % system viscosity too high for VPI processing
 - Reduced particle loading level to 20 vol % to manage viscosity

• $\kappa = 0.4 \text{ W/m-K at } 90 \text{K}$

- S2 glass laminates fabricated with this resin
 - No particle filtering
 - Uniform appearance through the laminate

Upcoming Work

- Subscale CCT impregnation at LBNL
 - CTD-701X
 - Testing to follow shortly thereafter
- Completion of CTD-155GN20 laminate testing at CTD
- Stack evaluation of CTD-155GN20 at FNAL
- Second subscale CCT fabrication at LBNL
 - Planned as CTD-155GN
- Third subscale CCT resin system TBD

Acoustic sensors + quench antenna (M. Marchevsky, US MDP 2021)

CCT sub magnet (D. Arbelaez, US MDP 2021)

45 turns / layer = 500 mm physical length

