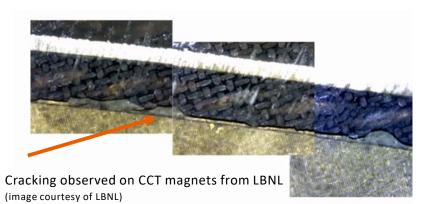
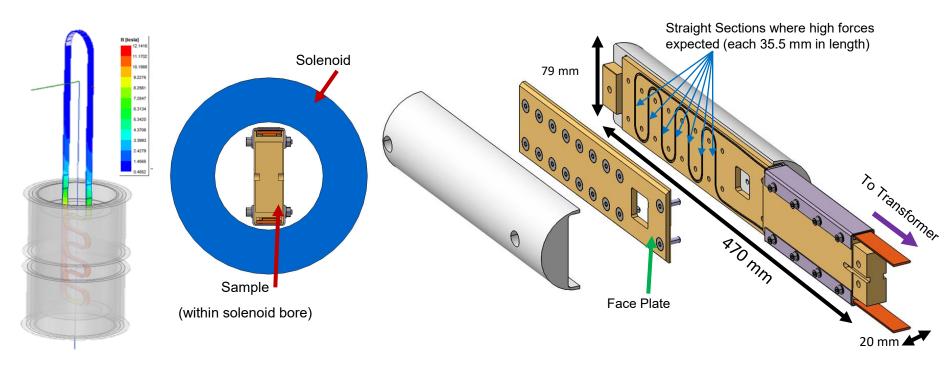

PAUL SCHERRER INSTITUT

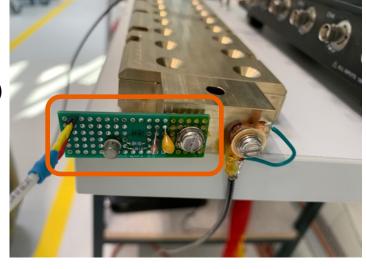
PSI: <u>Michael Daly</u>, <u>André Brem</u>, Bernhard Auchmann, Christoph Hug, Serguei Sidorov UTwente: Marc Dhalle, Anna Kario, Simon Otten, Herman ten Kate


BOX Experiments and Material Assessment

Third KE4738 Technical Meeting, 24/03/2021

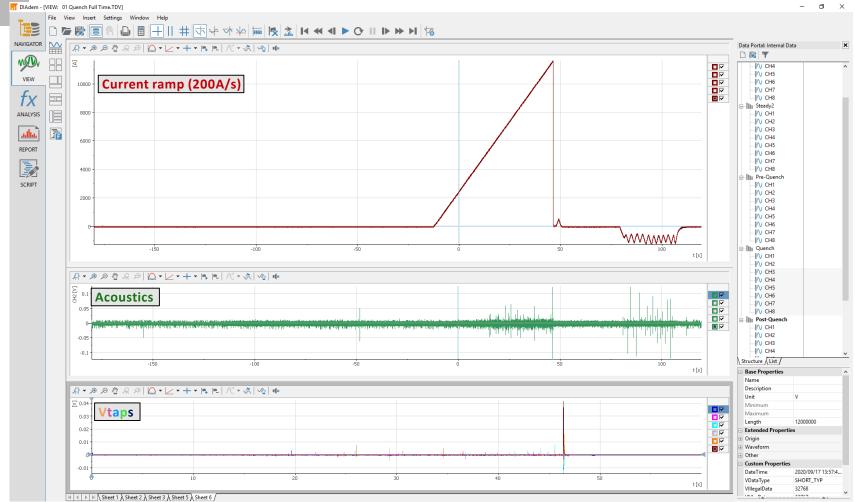
- Quick overview of BOX samples.
 - BOX Sample
 - Experimental Setup
 - Instrumentation
- Typical results from BOXs:
 - Training behavior
 - Data acquisition
 - Post mortem analysis
- Future Plans
- PART 2: presented by André Brem



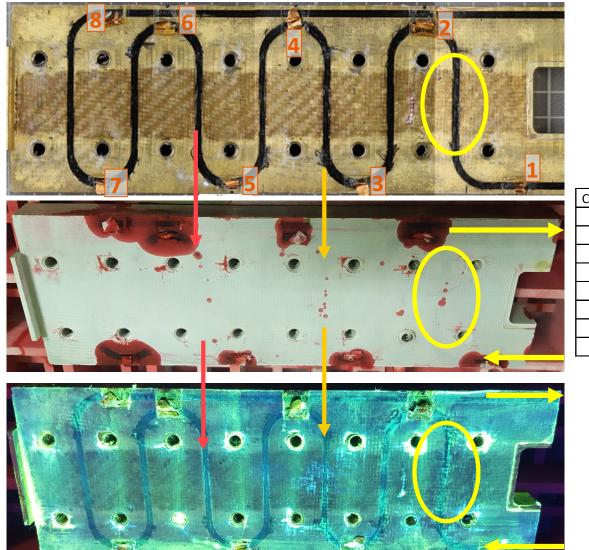

- <u>BOnding eXperiment (BOX)</u> to test technological solutions to the channel-bonding problem.
- University of Twente testing the BOX samples in up to 11 T background field, powered by a superconducting transformer.
- Results from BOX experiments will be used to decide the future steps for PSI CCT and assess alternative technologies.

- Five BOX samples tested until now (x4 Nb3Sn and x1 NbTi)
- Some are representative of PSI's CD01 CCT magnet with some small variations:
 - With/without MICA, some cleaning of fibreglass sizing, sand blasting...
 - Alu-bronze, anodised aluminium, stainless steel.
 - Impregnations systems: CTD101K, Mix61, Wax...
- Intrumentation & Analytics:
 - Acoustic sensors similar to LBNL's Maxim's design (1 to 2 sensors)
 - Vtaps to identify quenching segments
 - Wave analysis, V-I Measurements,
- Some compromises in dimensions required for winding sample.
 - Channel size

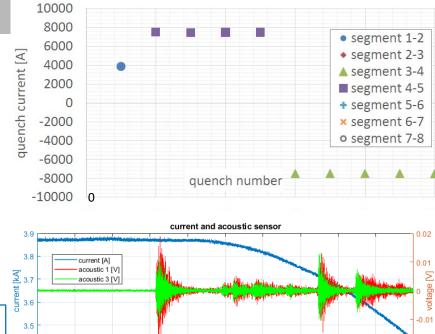
Piezo (right) and cryoamp (left)

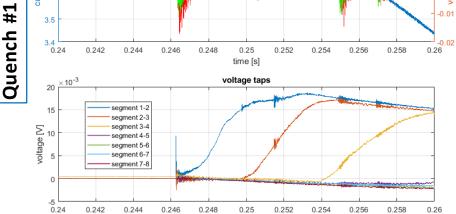


- Target: 23 kA at 7,5 T solenoid field (6100 N on 36mm straight sections of <u>Nb₃Sn</u>)
- Ramp at 200 A/s (typical ramp for UTwente)
- Obtained training behavior, localization of quenches, acoustic & Vtap signals.
 - BOX 1 had a Mica Layer,
 - BOX 2 no Mica,
 - BOX 3 sand blasted and fibre glass braid cleaned (expected improvement)
- All impregnated using MIX 61

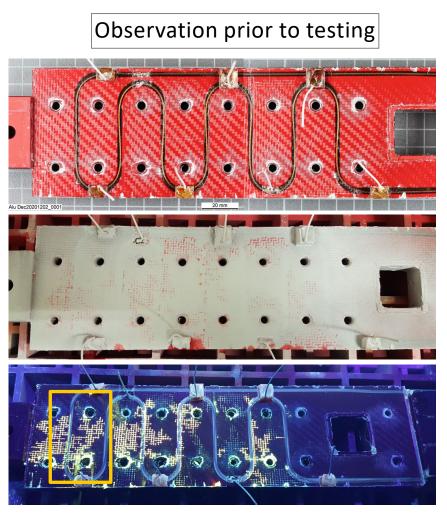

- First quench of sample at 11,6kA.
- Increasing AE signals during ramp up.
- Fairly distinct signals at Quench

Dye penetrant testing BOX 1

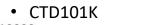


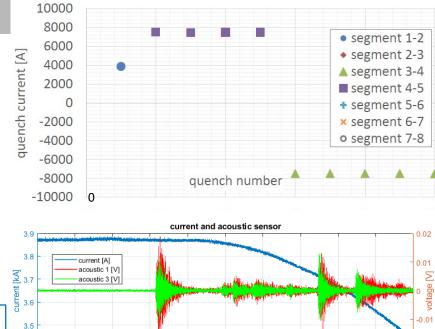


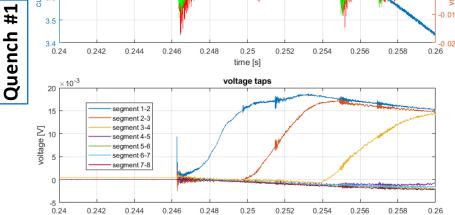
Channel	Segment	Counts							
1	Current								
2	Acoustic Signal								
3	1-2		14						
4	2-3		7						
5	3-4		8						
6	4-5		8						
7	5-7		8						
8	7-8		3						

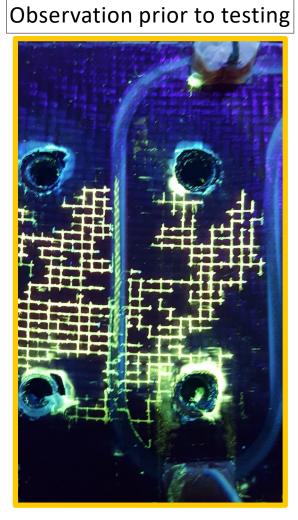


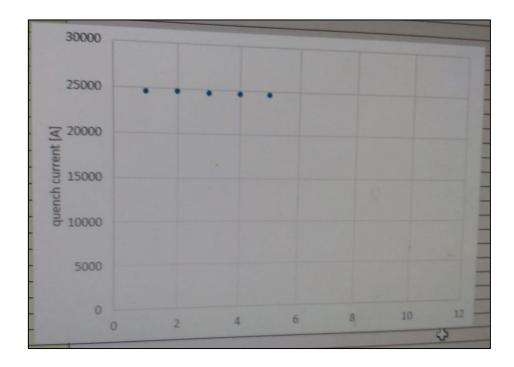
- NbTi (MQM, Ref 0,825) at 4,5 T; Ic = 7,5 kA (1200 N)
- S2 fibreglass sleeve, heated to 300°C for >2hrs to remove some sizing
- Anodised Aluminium
- CTD101K

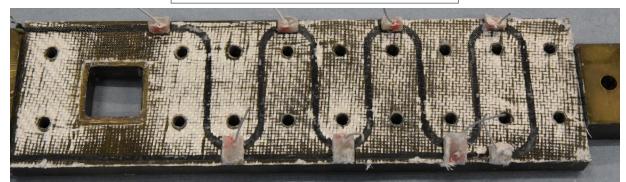



time [s]




- NbTi (MQM, Ref 0,825) at 4,5 T; Ic = 7,5 kA (1200 N)
- S2 fibreglass sleeve, heated to 300C for >2hrs to remove some sizing
- Anodised Aluminium

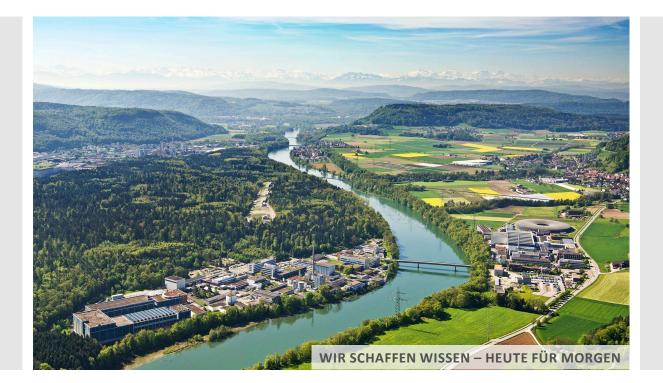

time [s]



BOX 6: Paraffin Wax Impregnation

- Nb₃Sn conductor, similar to previous BOX samples.
- Cable insulated with S2 braid.
- Fibre glass sheet interlayer.
- Sand blasted alu-bronze former.
- Impregnated with paraffin.
- Results:
 - No training...
 - ... and reaches Ic 24,5 kA
 - Ramp rate 200 A/s
 - -7.5 T Sol field
 - ...

Observations prior to testing


Future plans

		Identifying	Conductor				
		Feature	Туре	Insulation	Coating/treatment		
Sep-20	BOX 1	Trial	Nb₃Sn	S2 braided + Mica	N/A		
Sep	BOX 2	Rep CD1 mag	Nb ₃ Sn	S2 braided	N/A		
	BOX 3	Rep CD1 improved adhesion	Nb₃Sn	S2 braided	wash off S2 sizing		
Dec-20	BOX 4	Schlomo: No impregnation	Nb ₃ Sn	S2 braided + sleeve	e heated to 300C for		
Ĕ	BOX 5	Kirby/CERN CCT	NbTi	S2 Sleeve	e heated to 300C for		
	BOX 6	Bee's wax impregnation	Nb₃Sn	S2 braided	wash off S2 sizing		
	BOX 7	Improve CD1 with MY750	Nb₃Sn	S2 braided	wash off S2 sizing		
	BOX 8	Improve sliding	Nb ₃ Sn	S2 braided	wash off S2 sizing		
	BOX 9	Liquid metal	Nb₃Sn	None	?????		
	BOX 10	Stycast + dip-coating	Nb₃Sn	None	N/A		
	BOX 11	New insulation scheme	Nb ₃ Sn	Mullite/Basalt	N/A		
	BOX 12	PSI coating R&D	Nb₃Sn	glass glue	N/A		
	BOX 13	Wind react Unwind/wind	Nb ₃ Sn	S2 braided	N/A		
	BOX 14	CD1 + improvements + CTD101K	Nb ₃ Sn	S2 braided	wash off S2 sizing		
	BOX 15	CD1 + improvements + MY750	Nb₃Sn	S2 braided	wash off S2 sizing		
	BOX 16	3D printed	Nb ₃ Sn	S2 braided	wash off S2 sizing		
	BOX 17	2 turn	Nb ₃ Sn	S2 braided	wash off S2 sizing		
	BOX 18	Force cracking on surface	Nb₃Sn	S2 braided	N/A		
	BOX 19	Solid N2 Impregnation	Nb ₃ Sn	S2 braided	wash off S2 sizing		
	BOX 20	Sliding contacts	Nb ₃ Sn	S2 braided	improve sliding		
	BOX 21	Improve heat capacity	Nb3Sn	S2 braided	Gd ribbon		

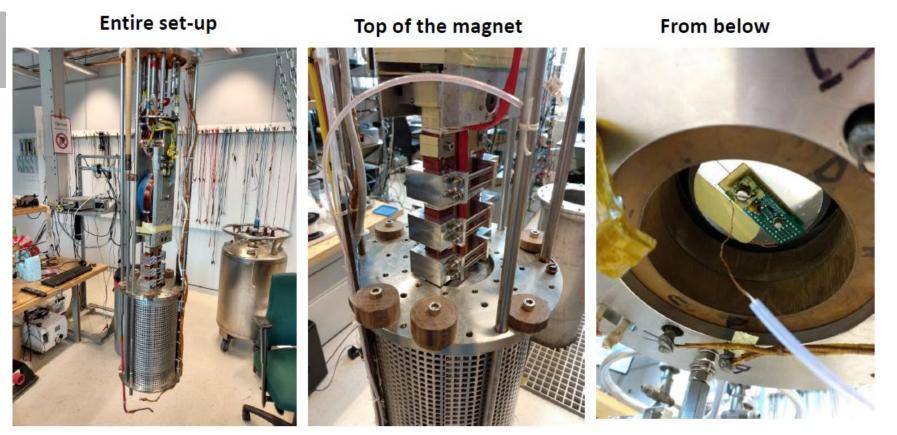
	Identifying Conductor				Reaction		Impregnation			Pre-tinning						
		Feature			1					1	1	1	Final assembly (interlayer)			Goals
			Туре		Coating/treatmen		Coating/treatment	Condition		Impregnation				Solder	Quantity	
2	BOX 1	Trial		S2 braided + Mica	N/A		As received/machined		Mix 61		horizontal	vacuum	Fibre glass sheet	SnAg	2 x double ribbon + addition wire	
s	BOX 2	Rep CD1 mag	Nb ₂ Sn	S2 braided	N/A	Alu-bronze	As received/machined	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet / fibre tape	SnAg	1 x double ribbon	Represent as best CD1 magnet production and improve BOX fabrication
-	BOX 3	Rep CD1 improved adhesion	Nb ₂ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon + Solder wire	Reproduces CD1 as best as possible with sand blasted grooves and hope for better adhesion.
×.	BOX 4	Schlomo: No impregnation	Nb ₂ Sn	S2 braided + sleeve	e heated to 300C fe	S-Steel	As received/machined	210/400/665	None	N/A	N/A	N/A	Fibre glass Sheet	SnAg	2 x double ribbon + Solder wire	How far can the cable survive?; effects of stick slip and/or sliding; effects of micro-cracking;
ă	BOX 5	Kirby/CERN CCT	NbTi	S2 Sleeve	e heated to 300C fe	Aluminium	Anodised/Sand Blasted	N/A	CTD101K	vertical	vertical	vacuum	Fibre glass Sheet	SnAg	2 x double ribbon + Solder wire	Emulate CERN CCT technology; See effects of non reaction residues/pollution on cable/wall/resin interface bond; Are there signs of cracking from micro v
	BOX 6	Bee's wax impregnation	Nb ₃ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	Paraffin Wax	vertical	vertical	vacuum	Fibre glass Sheet	SnAg	2 x double ribbon + Solder wire	Intermediate between no Impregnation and fully Impregnated. Softer release of energy? Can we have a low-friction contact on the channel walls?
	BOX 7	Improve CD1 with MY750	Nb ₂ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	MY750	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Reproduces CD1 as best as possible with sand blasted grooves and MY750 (Better fracture toughness and thermal contraction)
	BOX 8	Improve sliding	Nb ₂ Sn	S2 braided	wash off S2 sizing	Alu-bronze	HND (Br Ni coating)	210/400/665	MY750/Mix61	vertical	vertical	vacuum	None	SnAg	2 x double ribbon	Avoid Stick slip
	BOX 9	Liquid metal	Nb ₂ Sn	None	22225	Alu-bronze	dip-coating insulator	210/400/665	Metal Solder	Horizontal	horizontal	ambient	Kapton Sheet	SnAg	2 x double ribbon	Martin Wilson previous studies; better cooling; better bonding?
	BOX 10	Stycast + dip-coating	Nb ₃ Sn	None	N/A	S-Steel	dip-coating insulator	210/400/665	Stycast	vertical	horizontal	pressure	Kapton Sheet	SnAg	2 x double ribbon	Improved electrical insulation, former can be stainless steel and better properties of stycast at cold.
	BOX 11	New insulation scheme	Nb₂Sn	Mullite/Basalt	N/A	Alu-bronze	Sand blasted	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Anna's and PSI's suggestions to avoid pollution and therefore improve adhesion.
	BOX 12	PSI coating R&D	Nb ₂ Sn	glass glue	N/A	Alu-bronze	Calcium oxide	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Assess other coatings to improve electrical insulation and adhesion and build upon PSI knowledge
	BOX 13	Wind react Unwind/wind	Nb ₂ Sn	S2 braided	N/A	Alu-br/S-Steel	As received/machined	210/400/665	Mix 61	N/A	N/A	N/A	Fibre glass sheet	SnAg	2 x double ribbon	Can it be done without compromising the conductor?
	BOX 14	CD1 + improvements + CTD101K	Nb ₂ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	CTD101-K	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Make improvements to bonding and test new resin
	BOX 15	CD1+improvements+MY750	Nb ₃ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	MY750	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Make Improvements to bonding and test new resin
	BOX 16	3D printed	Nb₂Sn	S2 braided	wash off S2 sizing	3D Printed	Scaffolds	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Encouraging results from ETHZ; Check Improved bonding
	BOX 17	2 turn	Nb ₂ Sn	S2 braided	wash off S2 sizing	Alu-bronze	Sand blasted	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon	Can we wind two cables at the same time, connected in series at the splice; two cables are pushing out instead of one, required 2x the current.
	BOX 18	Force cracking on surface	Nb ₂ Sn	S2 braided	N/A	Alu-bronze	As received/machined	210/400/665	Mix 61	vertical	vertical	vacuum	No fibre/shim for a gap	SnAg	2 x double ribbon	Reproduce production and assembly of CCTs from LBNL
	BOX 19	Solid N2 Impregnation	Nb ₃ Sn	S2 braided	wash off S2 sizing	Alu-bronze	As received/machined	210/400/665	N2	In-situ test	N/A	In-situ test	Unknown	SnAg	2 x double ribbon	Can we freeze liquid Nitrogen to impregnate the cable inside the groove
	BOX 20	Sliding contacts	Nb₂Sn	S2 braided	improve sliding	Alu-bronze	Promote sliding	210/400/665	N/A	N/A	N/A	N/A	Unknown	SnAg	2 x double ribbon	Avoid stick slip motion
	BOX 21	Improve heat capacity	Nb3Sn	S2 braided	Gd ribbon	Alu-bronze	Sand blasted	210/400/665	Mix 61	vertical	vertical	vacuum	Fibre glass sheet	SnAg	2 x double ribbon + Solder wire	Heat heat capadity for better recovery

PAUL SCHERRER INSTITUT

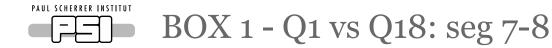
THANK YOU FOR LISTENING

PART2...

PAUL SCHERRER INSTITUT

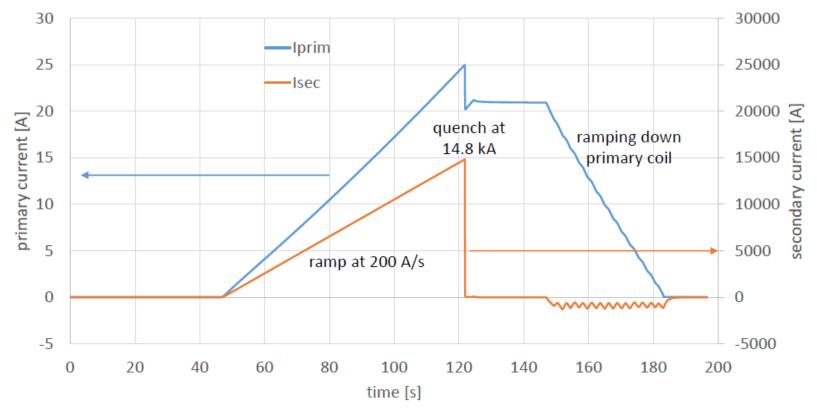


COMPLEMENTARY SLIDES



UTwente solenoid overview

Courtesy S.Otten (Utwente)


 Stark difference between the AE signal of the first and 18th quench occurring in the same segment.

- Target: 23 kA at 7,5 T solenoid field
- Ramp at 200 A/s (typical ramp for Utwente)
- If there is a limitation then reduce ramp rate (50 A/s) or change current direction.

Courtesy S.Otten (Utwente)