

EW corrections in LHC simulations in the SHERPA framework **PSR 2021**

Enrico Bothmann 2021-05-27

Institut für Theoretische Physik

Invitation

- This talk: (approx.) NLO QCD+EW in state-of-the-art (showered!) event generation for the LHC \bullet
- No fixed-order talk, instead interested in inclusion of higher-order EW corrections within matching+merging setups (in Sherpa) and their automation
- Will not discuss lower-scale QED like QED FSR/PDFs, EPA (established tools/methods available)

$$\mathcal{O}(\alpha_s^2) \sim \mathcal{O}(\alpha)$$

 \rightarrow EW effects can be enhanced, e.g. logarithmic Sudakov suppression towards high energy* that are of interest e.g. for BSM searches

* all invariants larger $m_{\rm W}$

 \rightarrow for Run II and beyond: EW corrections required for precision measurements with (sub)percent accuracy and for searches in tails of (invariant mass) distributions

Multijet-merging CKKW-L / "MEPS@(N)LO"

[Höche et al. 0903.1219, 1009.1127]

- (Other: MiNLO, FxFx, MLM, UMEPS, UNLOPS ...)
- such merging schemes @ NLO are de-facto standard for LHC simulated samples
- combine parton-shower matched calculations for several jet multiplicities in a single inclusive sample
 - resolution criterion to separate ME and PS regions
 - QCD Shower Sudakov form factor to render multiplicities exclusive
- predictive for multi-jet observables (= wide region of phase space)
- can be hadronised for particle-level prediction
- support for QCD+EW NLO?
 - No fully automated implementation yet
 - matched to QCD+QED shower impl'd & studied for individual procs in POWHEG-BOX

Inclusive Jet Multiplicity jets) [pb] ATLAS data MePs@Nlo N_{jet} MEPs@NLO $\mu/2...2\mu$ MEnloPS Λ MENLOPS $\mu/2...2\mu$ +σ(W. Mc@Nlo 103 > 20 GeV (×10) $p_{\perp}^{
m jet}>30\,{
m GeV}$ 10^{2} ----. 10 5

[Höche et al. 0903.1219, 1009.1127]

No full automation for NLO+PS EW ...

To the rescue: approximate schemes

- can at least capture logarithmic suppression from virtual gauge boson exchanges and hence the Sudakov suppression in the high energy region \rightarrow approximate NLO EW
 - implement as local K factor to QCD NLO \rightarrow easy to include within existing schemes
- in Sherpa 2: **EWvirt** [Kallweit et al. 1511.08692]
 - calculate K factor via EW virtual loop ME (among other contribs)
- in Sherpa 3: supplemented by **EWsud** [EB, Napoletano 2006.14635]
 - calculate K factor using LL and NLL terms in high energy limit
- can be mixed: proposal of EWhybrid

EWvirt 1 EW virtual approximation

[Kallweit et al. 1511.08692]

construct approximation that only reweights a Born configuration

$$\delta_{\text{EW}}^{\text{approx}}\left(\Phi_{n}\right) = \frac{V_{n}^{\text{EW}}\left(\Phi_{n}\right) + I_{n}^{\text{EW}}\left(\Phi_{n}\right)}{B_{n}(\Phi_{n})}$$

- exact virtual V_n^{EW} , approx. integrated real contribution I_n^{EW}
- just a local K factor \rightarrow apply within MEPS@NLO, replacing QCD $\overline{B}_{n,OCD}$ with

$$\overline{B}_{n,\text{QCD+EW}approx} \left(\Phi_n \right) = \overline{B}_{n,\text{QCD}} \left(\Phi_n \right) + B_n \left(\Phi_n \right) \delta_{\text{EW}}^{\text{approx}} + B_{n,\text{mix}} \left(\Phi_n \right)$$
$$\overline{B}_{n,\text{QCD}\times\text{EW}approx} \left(\Phi_n \right) = \overline{B}_{n,\text{QCD}} \left(\Phi_n \right) \left(1 + \delta_{\text{EW}}^{\text{approx}} \right) + B_{n,\text{mix}} \left(\Phi_n \right)$$

- can also exponentiate $\left(1 + \delta_{EW}^{approx}\right) \rightarrow \exp\left(\delta_{EW}^{approx}\right)$, but consider that this will also exponentiate non-logarithmic terms in δ_{FW}^{approx}
- real QED radiation can be added during event generation, using PS or soft-photon resummation à la YFS
- works well for large-pT regions where EW corrections dominated by virtual W/Z exchange, \approx 5 % if observable not driven by real radiation

[Gütschow et a., Eur.Phys.J. C78 (2018) 317]

EWvirt 2 Application to WW(j) production

- example: WWj selection, realistic experimental setup
- NLO QCD×EW_{approx} within few percent of NLO QCD×EW
- fixed-order results problematic due to jet veto logarithms
 - also induces large difference "+" vs. "×"
- parton shower in merged results stabilises QCD predictions \rightarrow also "+" vs. "×" stable
- very similar EW corrections in merged sample

EWvirt 3 Some observations

- EW_{approx} additive/multiplicative scheme (for \overline{B}_n K factor) \neq schemes at FO (at histogram level):
 - additive scheme actually includes QCD×EW via higher multi procs and PS
 - No approx corrections for subtracted real emission events H_n (often quite small in merging context, because usually more LO multis follow that make up the tails, ≤ 10 % usually)
- Not expected to improve inclusive observables
- adding PS / soft-photon resummation can introduce double-counting of virtual QED corrections
 - with QED shower: dipoles that span high pT legs
 - with YFS (only applied to decays) → does not impact accuracy in targeted high-energy regime
 - both: unitarity of resummation ensures incl. xs not affected

EWsud 1

LL and NLL terms in Sudakov limit

[Denner, Pozzorini (2001) hep-ph/0010201]

- calculation of all LL and NLL terms in Sudakov limit
 - "SC" soft+coll. double logs: W,Z, γ loops between pairs of ext. legs, split into ...

• LSC
$$\propto \frac{\alpha}{4\pi} \log^2 \frac{s}{M^2}$$

• SSC~ $\propto \frac{\alpha}{4\pi} \log \frac{s}{M^2} \log \frac{p_k \cdot p_l}{s}$

- "C" soft/coll. single logs: ext. line splits into pair of int. lines with one W,Z, γ ; and FRC $\delta Z_{\varphi}/2$
- "PR" single logs from parameter renormalisation e, c_w, h_t, h_H
- All shown to factorise for helicity amplitudes:

$$\delta \mathscr{M}^{i_1 \dots i_n} \left(p_1, \dots, p_n \right) = \delta^{\mathrm{Sud}}_{i'_1 i_1 \dots i'_n i_n} \mathscr{M}^{i'_1 \dots i'_n} \left(p_1, \dots, p_n \right)$$

Implementation in Sherpa

[EB, Napoletano 2006.14635]

- follows Denner/Pozzorini
- correction on amplitude level means we can implement as local K factor as with EWvirt and apply within merged/matched event generation
 - however, apply to all events, not only to B
- use internal COMIX ME generator to evaluate ME ratios $(\delta^{\mathrm{Sud}}\mathcal{M})/\mathcal{M} = \mathcal{M}'/\mathcal{M}$
 - allows us to be completely general and automated
- can exponentiate: $K \rightarrow \exp(1 K)$
- alternative implementation exists in AlpGen (no longitudinal W/Z modes) [Chiesa et al. (2013) 1305.6837]
 - we use the Goldstone boson equivalence theorem to overcome this limitation, as in Denner/ Pozzorini

$$\epsilon_{\rm L}^{\mu}(p) = \underbrace{\frac{p^{\mu}}{M}}_{H} + \mathcal{O}\left(\frac{M}{p^0}\right)$$

EWsud 3

Processes with resonances

[EB Napoletano Schönherr Schumann Villani tbp]

- all invariants should be $r_{kl} = (p_k + p_l)^2 \sim 2p_k p_l \gg M_W^2$
- $d\sigma$ better not have any resonances
- consider e.g. two leptons $f_{1,2}$ from a W/Z decay:

SSC
$$\propto \frac{\alpha}{4\pi} \log \frac{s}{M^2} \log \frac{p_{f_1} \cdot p_{f_2}}{s}$$

• overcome by using resonance finder

$$\Delta = \left| m_{f_1 f_2} - m_{\text{res}} \right| / \Gamma_{\text{res}} < \Delta_{\text{thr}}$$

 cluster leptons into bosons, then calculate logarithms for clustered amplitude (NWA)

EWvirt & EWsud

Comparative study in ZZ production

[EB Napoletano Schönherr Schumann Villani tbp]

- Both schemes capture dominant logs in Sudakov region \rightarrow while no perfect agreement, usually see K factors consistent within couple percent
- EWvirt:
 - + subleading Born (can be sizable, e.g. in 3-jet production) [Reyer Schönherr Schumann 1902.01763]
 - + approx. integrated real emission
 - + finite terms in virtual loop
 - not applied to real-emission events
 - requires virtual loop ME, and if we have it, it's still expensive
- EWsud has no finite terms, but is cheap and can be applied everywhere
- proposal: apply EWvirt to lower multis and EWsud to real-emission terms and higher multis, in a single merged sample ("Hybrid")
 - capture finite corrections (~incl. EW K factor) in low p_T region
 - smoothly transition to high p_T / large multi behaviour, where real-emission/higher multiplicity events take over

EWvirt & EWsud

Comparative study in ZZ production

[EB Napoletano Schönherr Schumann Villani tbp]

- Both schemes capture dominant logs in Sudakov region → while no perfect agreement, usually see K factors consistent within couple percent
- EWvirt:
 - + subleading Born (can be sizable, e.g. in 3-jet production) [Reyer Schönherr Schumann 1902.01763]
 - + approx. integrated real emission
 - + finite terms in virtual loop
 - not applied to real-emission events
 - requires virtual loop ME, and if we have it, it's still expensive
- EWsud has no finite terms, but is cheap and can be applied everywhere
- **proposal**: apply EWvirt to lower multis and EWsud to real-emission terms and higher multis, in a single merged sample ("Hybrid")
 - capture finite corrections (~incl. EW K factor) in low p_T region
 - smoothly transition to high $p_{T}\,/\,{\rm large}$ multi behaviour, where real-emission/higher multiplicity events take over

Conclusions

- electroweak effects are increasingly important at LHC (Run 2), HE–LHC, FCC, etc.
- become large whenever the process scale is large compared to EW scale
- can be incorporated as an approximation in multi-jet merged event generation to improve description in those regions
 - EWvirt included since Sherpa 2.2.1
 - EWsud will be added in Sherpa 3.x
 - comparative study in ZZ, exploration of Hybrid scheme

Thank you!

Back-up

Collider reach

- Plot taken from a talk by Marek Schönherr
- How far the integrated luminosity takes us into the Sudakov region

Subleading SC term

$$r_{kl} = (p_k + p_l)^2 \sim 2p_k p_l \gg M_W^2$$

$$L\left(\left|r_{kl}\right|, M^2\right) := \frac{\alpha}{4\pi} \log^2 \frac{r_{kl}}{M^2}$$

$$L\left(\left|r_{kl}\right|, M^2\right) = L\left(s, M^2\right) + 2l\left(s, M^2\right) \log \frac{\left|r_{kl}\right|}{s} + L\left(\left|r_{kl}\right|, s\right)$$

Support of NLO EW+QCD in POWHEG-BOX

- NLO EW+QCD matched to QCD+QED PS V* production Barzè et al 2012, 2013 https://arxiv.org/abs/1202.0465 https://arxiv.org/abs/1302.4606
- using OpenLoops Granata et al 2017 https://arxiv.org/abs/1706.03522
- Chiesa et al 2020 https://arxiv.org/abs/1906.01863
- Chiesa Oleari Re 2020 https://arxiv.org/abs/2005.12146

NLO EW+QCD matched to QCD+QED PS for HV*+0,1 merged with MiNLO

NLO EW matched to QED PS same-sign W*W* production using Recola2

NLO EW+QCD matched to QCD+QED PS V*V* production using Recola2

Der

- Set masses to zero in loop integrand
 - → Feynman rules should have no inverse M_{V_a}
 - BUUUT what about the HE limit o polarisation vectors!?

$$\epsilon_{\rm L}^{\mu}(p) = \frac{p^{\mu}}{M} + \mathcal{O}\left(\frac{M}{p^0}\right)$$

→ derivation of Denner/Pozzorini r

 Use the Goldstone-Boson Equiv Theorem (GBET)

$$\mathscr{M}_0^{\ldots W_{\mathrm{L}}^{\pm}} = \mathscr{M}_0^{\ldots \phi^{\pm}}$$

$$\mathcal{M}_0^{\ldots Z_{\mathrm{L}}\ldots} = \mathrm{i} \mathcal{M}_0^{\ldots \chi \ldots}$$

→ ALPGEN does not support GB, corrections

arivation of gauge invariance from high-energy unitarity bounds on the S matrix* John M. Cornwall, [†] David N. Levin, and George Tiktopoulos Department of Physics, University of California at Los Angeles, Los Angeles, California 90024 (Received 21 March 1974)	
d numerator	
verse powers of	
of longitudinal	 one-loop corrections of the GBET: → do not contain DL → DL corrections can use Born approximation on the left
valence	
, hence no V_a^L	Tackling this w/o GB?: → [Cuomo, Vecchi, Wulzer (2019) 1911.12366]

EWvirt & EWsud

Comparative study in ZZ production

[EB Napoletano Schönherr Schumann Villani tbp]

- Both schemes capture dominant logs in Sudakov region \bullet
- EWvirt:
 - subleading Born (can be sizable, e.g. in 3-jet production) [Reyer Schönherr Schumann 1902.01763]
 - approx. integrated real emission
 - finite terms in virtual loop
 - not applied to real-emission events
 - no subleading logs from RG
 - requires virtual loop ME
- don't expect perfect agreement, but so far we see K factors consistent within couple percent
- **proposal:** apply EWvirt to lower multis and EWsud to real-emission terms and higher multis, in a single merged sample ("Hybrid")

ZZ LO validation EWvirt/sud vs. EW NLO

- even more preliminary than the other plots
- EWvirt lacks KP terms, real emissions
- EWsud lacks finite terms, ~20%
- EW renormalisation scheme dependence as uncertainty?

