Large logarithm summation
by parton showers

:.:

Davison E. Soper

University of Oregon

work with Zoltan Nagy, DESY

(This version has a couple of small corrections. 26 May)

Parton Showers and Resummation Conference

May 2021






e Sometimes parton shower event generators can sum
large logarithms.

e Zoltan Nagy (DESY) and I have studied this in general and,
in particular, for the thrust distribution in electron-positron
annihilation in arXiv:2011.04773 and arXiv:2011.04773.

e We use the formulation for parton showers that forms
the basis for our shower generator DEDUCTOR.

e | will devote most this talk to a pedagogical review of
our view of the theoretical basis for summing logs
with parton showers.



(Quantum mechanics in
parton showers



Renormalization group
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X

e Start at hardest interaction and move to interactions

with smaller scales 2.



Statistical space
(omitting spin and color)

e Momenta and flavors

{p7 f}m N {pa7 faapba fb7p17 f17 v s Pm; fm}
e Probability density p({p, f}m)-

e The functions p form a vector space with vectors |,0)
e Use basis vectors |{p, f}m)-

e Renormalization group equation

e () = S™) (1)



“Classical” momenta

e Quantum statistical mechanics would use a density matrix

|{p7 f}m><{p/a f/}m|

e But {f'},, =~ {f}.,, and it is
a good approximation to use

{p'}m = {D}m.
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Interference diagrams

1IncC

e The parton shower needs to

emitting a gluon from parton /[ and emitting the same gluon

from a different parton k.
e With physical polarizations, the gluon must be soft.

e A dipole shower includes this.



Spin and color

e [Lach parton in a shower carries spin and color.
e We need to describe quantum field theory.

e Lor a statistical treatment, use quantum statistical mechanics.

e Use the spin-color density matrix, with basis elements

‘{c, ¢, s, 3’}m) & }{c, 3}m><{c’, s’}m‘



Color

e Lor this talk, just consider color:

|{Ca C/}m) A ‘{C}m><{c/}m}

e Splittings involve operators on the color space. FE.g.

tzr(fl — fl"‘fm—l—l) & tk(fk — fk_l_fm—H)

and

1 ®tk(fk — fk+fm+1)t2r(fl — fl‘l'fm+1)
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Other authors

e Forshaw, Holguin and Platzer (2020) use a color density
matrix formulation, dubbed amplitude evolution.

e They use diagrams like this

e (f. Forshaw, Holguin and Platzer (2019) and Martinez,
De Angelis, Forshaw, Platzer and Seymour (2018).
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Leading color approximation

e Throw away contributions that are missing it
you use U(3) instead of SU(3).

e Never generate

{e, ') = {etm)({bm|  with {c}m # {'}n

e The terms thrown away are suppressed by 1/N?Z.

e But some terms thrown away are enhanced by
large logarithms.
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[LC+ approximation

e Allow color contributions of the form

‘{Cv C/}m) — |{C}m><{cl}m‘
with
{ctm #{}m

e Throw away some parts of color operators

tzf(fl — fz+fm+1) R tr(fr — fk+fm+1)

according to a Simple rule. Nagy, Soper; JHEP (2012)

5



e This approximates the first order splitting operator & 1]

by a simpler operator SI[}(]; e

o |t

ASH = st — st

e When ASU is applied one or more times, the result
is suppressed by at least one factor 1/N?Z.
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can generate

]

1

|

logarithms

Color and large
e For observables with large logarithms, S

ithms per loop

two large logar
e The operator AS!]

soft gluon singularities

to

tive

1S sensi

but not collinear singularities.
e Thus AS!! can generate just one large logarithm per loop.

15



A historical example

e Consider eTe~ annihilation, starting at ggg production.

1

2

Feynman diagram Lund diagram

e | will use the Feynman diagram picture.
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e Add one more gluon.

2

e Gluon 4 is very soft (p4 — 0 at constant angle).

e It is emitted from parton [ with dipole partner k.

(I =3, k =2 here.)
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(I =3, k = 2 here.)

e Ikmission probability:

D4 Dk D1+ Q 2Dk - Di

D = ——— — e
Da Dk D1 Q +Da-Di Dk - Q Da - Dk D4 - Di

partitioning factor dipole factor
emission from [

I8



e Color states.

1,3,4,2]) o

e New statistical state:

p = (P31C31 + P32C35 + P13C 13 + Po3Cas + P12C 12 + P21 Co1) Py

1

Cs2 = (Cr/2) (|[1,3,4,2]) — |[1,4,3,2])) ([1,3,4,2]
+(Cr/2)|[1,3,4,2]) (([1,3,4,2]| — ([1,4,3,2]|)
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[LC+ approximation

e The LC+ approximation omits some parts of the color operator

oo (Saucia

e Define omitted terms

Ap = p— pCT ACy, = Cip — CHET

SO
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e The omitted color states

4
AC31 =0 11,4,3,2])([1,3,4,2]
AC32 =0
CF C1F
AC5 = —7 1,4,3,2])([1,3,4,2] ) 1,3,4,2])([1,4,3,2]
ACys = —% 1,3,4,2])([1,4,3,2] (’;F 1,4,3,2])([1,3,4,2]
ACis = % 1,4,3,2])([1,3,4,2]| - CF|[1,3,4,2]><[1,4,3,2]\

ACy = % 1,3,4,2])([1,4,3,2]| C;F|[1,4,3,2]><[1,3,4,2]
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Omitted probabilities

e Calculate probabilities by taking the trace of
the color density matrix.

e In a parton shower, this calculation is at the end.

TrAp = Z(I)lle”AClk O
Lk
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e This gives

—1 —1
Tr Ap = (((1312 — ®,3) F (D21 — Pa3) > Dy

IN.. IN..
B — Pa-p2 p1-Q 2D2 - P1
12 — X PN ~ P ~ ~ A ~
Dy P2 P1-Q+Ds-p1 P2 Q Pa-P2Pa-Pi
B — Pa-p3 p1-Q 2p3 - P1
13 — X

Pa-Pp3P1-Q+Da-p1p3-CQ Pa-P3Da-P1
o &5 — dy3 is not singular when p4 becomes
collinear with p; or ps or ps.

o &y — dy3 also has no collinear singularities.

e So Tr Ap is singular only when p4 — 0 at constant angle.

e Ir Ap is not singular in the regions that give

leading logarithms.
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Probabilities with LC+

e This result was obtained by Gustafson (1993) based on
Lund diagrams and color coherence.
1

3

2

e This method has been extended by Hamilton,
Medves, Salam, Scyboz and Soyez (2020).
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Some results

e Choose the thrust distribution as an example.

e Look at the Laplace transtform of the thrust distribution.

1

g(v) = E( e UG, Q%) |pu)

e Manipulate this to the form

i = (33 [“E] i)

k=1n=k -

. <L[Lk] (v)) are integrals with k factors of the shower
splitting operator.
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= (33 [“E] i)

k=1 n=k -

. (L[lk] (v)) are integrals with k factors of the shower
splitting operator.

. <Z,[,J1] (v)) gives the NLL summation of thrust logarithms.
e Check that <If,[f](y)> for £ > 1 does not contribute NLL terms.

e Need <Z,[,Jk] (v)) to contain no higher power of log(rv) than
log(v)]" .

e Sometimes one can show this analytically for all £ and n.

e Otherwise, use numerical checks for particular k£ and n.
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e For DEDUCTOR with its default A ordering, this works.

should have no higher power than [log(v)]! for large v.

A ordering, DEDUCTOR
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. <I£2] (v)) should have no higher power than [log(v)]' for large v.

B = 0.0 (kr) ordering, PANLOCAL

20

— (T (v))
- d(Zy (v)) /dlog(v)

15

L R P e e TS

e For the PANLOCAL shower (but with full color) this works.
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. <I£2] (v)) should have no higher power than [log(v)]' for large v.

A ordering, DEDUCTOR-LOCAL
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e For the DEDUCTOR shower with A ordering but with a

local momentum mapping this fails.
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