Large logarithm summation by parton showers

Davison E. Soper University of Oregon

work with Zoltan Nagy, DESY

(This version has a couple of small corrections. 26 May)

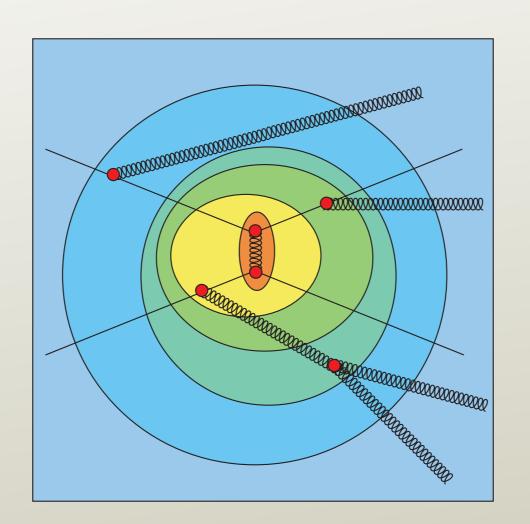
Parton Showers and Resummation Conference May 2021

Prequel

- Sometimes parton shower event generators can sum large logarithms.
- Zoltan Nagy (DESY) and I have studied this in general and, in particular, for the thrust distribution in electron-positron annihilation in arXiv:2011.04773 and arXiv:2011.04773.
- We use the formulation for parton showers that forms the basis for our shower generator Deductor.
- I will devote most this talk to a pedagogical review of our view of the theoretical basis for summing logs with parton showers.

Quantum mechanics in parton showers

Renormalization group



• Start at hardest interaction and move to interactions with smaller scales μ^2 .

Statistical space (omitting spin and color)

Momenta and flavors

$${p, f}_m = {p_a, f_a, p_b, f_b, p_1, f_1, \dots, p_m, f_m}.$$

- Probability density $\rho(\{p,f\}_m)$.
- The functions ρ form a vector space with vectors $|\rho\rangle$.
- Use basis vectors $|\{p, f\}_m\rangle$.
- Renormalization group equation

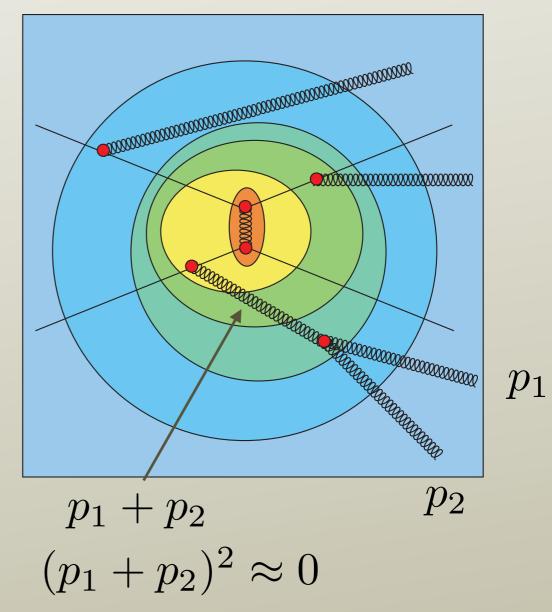
$$\mu \frac{d}{d\mu} \left| \rho(\mu) \right) = \mathcal{S}^{[1]}(\mu) \left| \rho(\mu) \right)$$

"Classical" momenta

• Quantum statistical mechanics would use a density matrix

$$|\{p,f\}_m\rangle\langle\{p',f'\}_m|$$

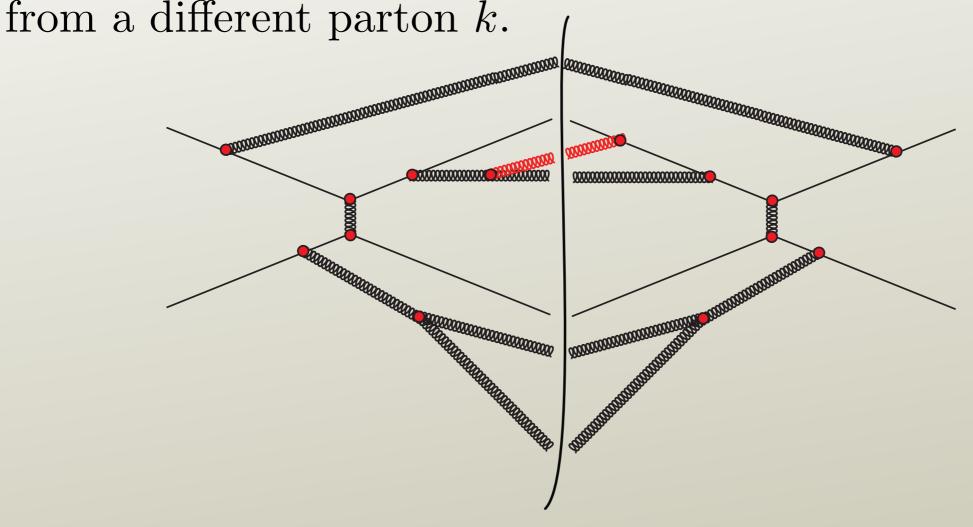
• But $\{f'\}_m \approx \{f\}_m$ and it is a good approximation to use $\{p'\}_m \approx \{p\}_m$.



7

Interference diagrams

• The parton shower needs to include the interference between emitting a gluon from parton l and emitting the same gluon



- With physical polarizations, the gluon must be soft.
- A dipole shower includes this.

Spin and color

- Each parton in a shower carries spin and color.
- We need to describe quantum field theory.
- For a statistical treatment, use quantum statistical mechanics.
- Use the spin-color density matrix, with basis elements

$$|\{c,c',s,s'\}_m\rangle \Leftrightarrow |\{c,s\}_m\rangle\langle\{c',s'\}_m|$$

Color

• For this talk, just consider color:

$$|\{c,c'\}_m\rangle \Leftrightarrow |\{c\}_m\rangle\langle\{c'\}_m|$$

 \bullet Splittings involve operators on the color space. E.g.

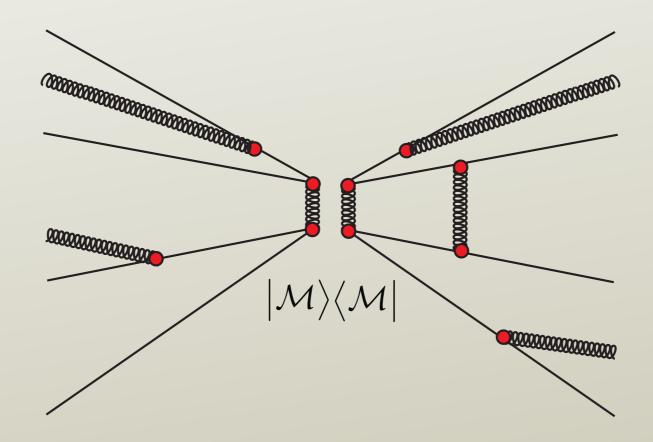
$$t_l^{\dagger}(f_l \to \hat{f_l} + \hat{f_{m+1}}) \otimes t_k(f_k \to \hat{f_k} + \hat{f_{m+1}})$$

and

$$1 \otimes t_k(f_k \to \hat{f}_k + \hat{f}_{m+1})t_l^{\dagger}(f_l \to \hat{f}_l + \hat{f}_{m+1})$$

Other authors

- Forshaw, Holguin and Plätzer (2020) use a color density matrix formulation, dubbed amplitude evolution.
- They use diagrams like this



• Cf. Forshaw, Holguin and Plätzer (2019) and Martinez, De Angelis, Forshaw, Plätzer and Seymour (2018).

Leading color approximation

- Throw away contributions that are missing if you use U(3) instead of SU(3).
- Never generate

$$\left| \{c, c'\}_m \right\rangle = \left| \{c\}_m \right\rangle \left\langle \{c'\}_m \right| \quad \text{with} \quad \{c\}_m \neq \{c'\}_m$$

- The terms thrown away are suppressed by $1/N_c^2$.
- But some terms thrown away are enhanced by large logarithms.

LC+ approximation

• Allow color contributions of the form

$$\left| \{c, c'\}_m \right\rangle = \left| \{c\}_m \right\rangle \left\langle \{c'\}_m \right|$$

with

$$\{c\}_m \neq \{c'\}_m$$

• Throw away some parts of color operators

$$t_l^{\dagger}(f_l \to \hat{f_l} + \hat{f}_{m+1}) \otimes t_k(f_k \to \hat{f_k} + \hat{f}_{m+1})$$

according to a simple rule. Nagy, Soper; JHEP (2012)

• This approximates the first order splitting operator $\mathcal{S}^{[1]}$ by a simpler operator $\mathcal{S}^{[1]}_{LC+}$.

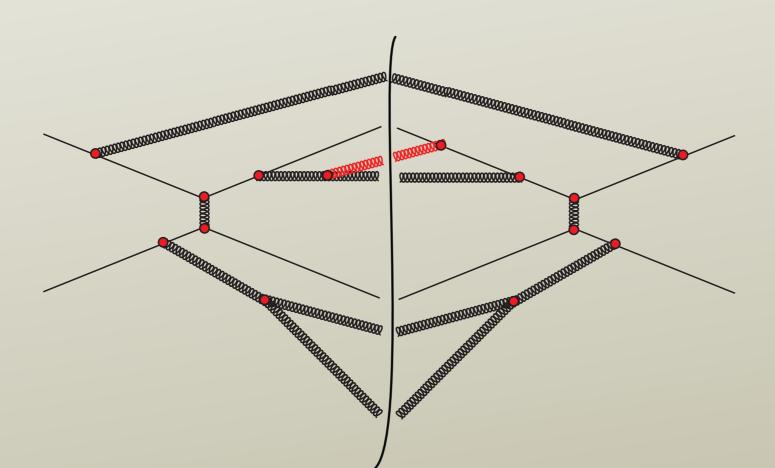
• Let

$$\Delta S^{[1]} = S^{[1]} - S^{[1]}_{LC+}$$

• When $\Delta \mathcal{S}^{[1]}$ is applied one or more times, the result is suppressed by at least one factor $1/N_c^2$.

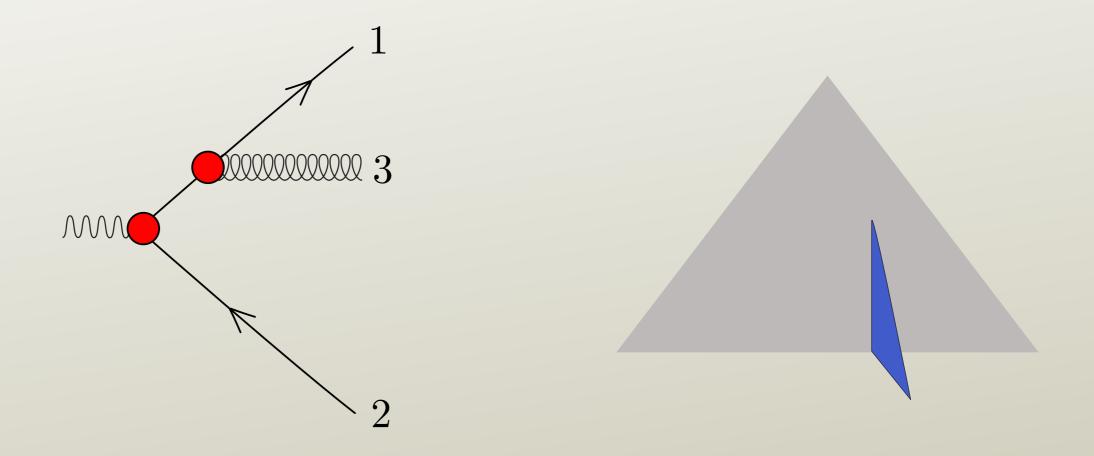
Color and large logarithms

- For observables with large logarithms, $\mathcal{S}^{[1]}$ can generate two large logarithms per loop.
- The operator $\Delta S^{[1]}$ is sensitive to soft gluon singularities but not collinear singularities.
- Thus $\Delta S^{[1]}$ can generate just one large logarithm per loop.



A historical example

• Consider e^+e^- annihilation, starting at $q\bar{q}g$ production.

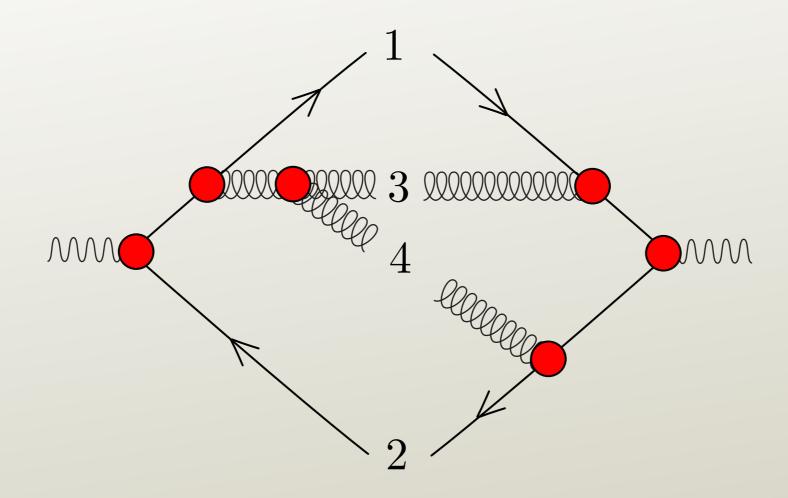


Feynman diagram

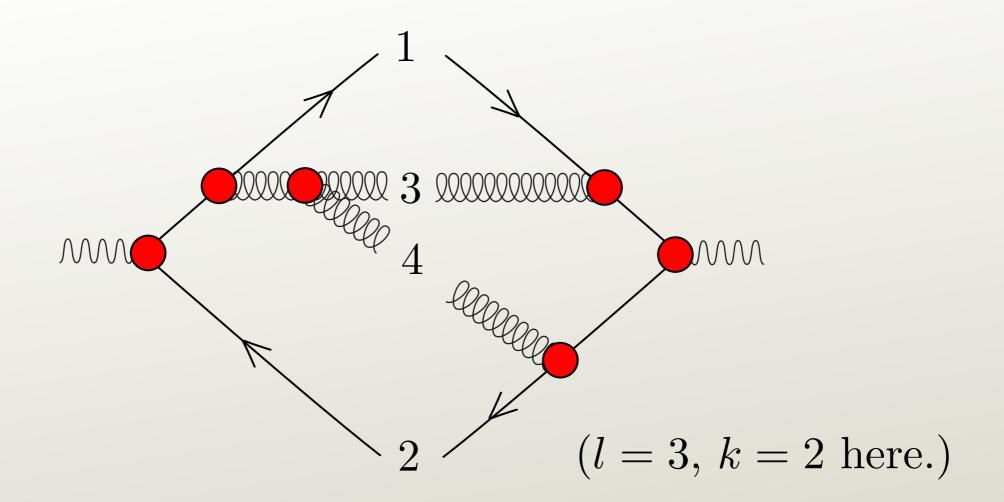
Lund diagram

• I will use the Feynman diagram picture.

• Add one more gluon.



- Gluon 4 is very soft $(\hat{p}_4 \to 0 \text{ at constant angle})$.
- It is emitted from parton l with dipole partner k. $(l=3,\,k=2 \text{ here.})$



• Emission probability:

$$\Phi_{lk} = \frac{\hat{p}_4 \cdot \hat{p}_k \ \hat{p}_l \cdot Q}{\hat{p}_4 \cdot \hat{p}_k \ \hat{p}_l \cdot Q + \hat{p}_4 \cdot \hat{p}_l \ \hat{p}_k \cdot Q} \ \frac{2\hat{p}_k \cdot \hat{p}_l}{\hat{p}_4 \cdot \hat{p}_k \ \hat{p}_l \cdot Q + \hat{p}_4 \cdot \hat{p}_l \ \hat{p}_k \cdot Q}$$

partitioning factor emission from l

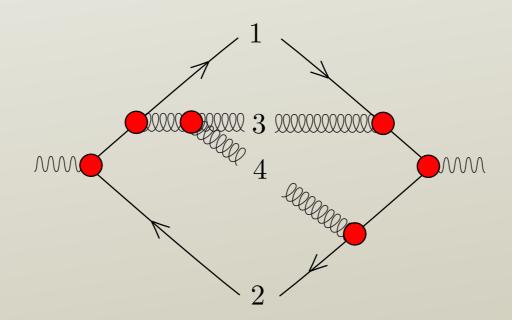
dipole factor

• Color states.

tes.
$$|[1,3,4,2]\rangle \propto$$

• New statistical state:

$$\rho = (\Phi_{31}C_{31} + \Phi_{32}C_{32} + \Phi_{13}C_{13} + \Phi_{23}C_{23} + \Phi_{12}C_{12} + \Phi_{21}C_{21})\Phi_0$$



$$C_{32} = (C_{F}/2) (|[1,3,4,2]\rangle - |[1,4,3,2]\rangle) \langle [1,3,4,2]| + (C_{F}/2) |[1,3,4,2]\rangle (\langle [1,3,4,2]| - \langle [1,4,3,2]|)$$

LC+ approximation

• The LC+ approximation omits some parts of the color operator

$$\rho^{\text{LC+}} = \left(\sum_{lk} \Phi_{lk} C_{lk}^{\text{LC+}}\right) \Phi_0$$

• Define omitted terms

$$\Delta \rho = \rho - \rho^{\text{LC}+} \qquad \Delta C_{lk} = C_{lk} - C_{lk}^{\text{LC}+}$$

SO

$$\Delta \rho = \left(\sum_{lk} \Phi_{lk} \, \Delta C_{lk}\right) \Phi_0$$

• The omitted color states

Omitted probabilities

- Calculate probabilities by taking the trace of the color density matrix.
- In a parton shower, this calculation is at the end.

$$\operatorname{Tr}\Delta\rho = \left(\sum_{l,k} \Phi_{lk} \operatorname{Tr} \Delta C_{lk}\right) \Phi_0$$

• This gives

$$\operatorname{Tr} \Delta \rho = \left((\Phi_{12} - \Phi_{13}) \frac{-1}{2N_{c}} + (\Phi_{21} - \Phi_{23}) \frac{-1}{2N_{c}} \right) \Phi_{0}$$

$$\Phi_{12} = \frac{\hat{p}_{4} \cdot \hat{p}_{2} \, \hat{p}_{1} \cdot Q}{\hat{p}_{4} \cdot \hat{p}_{2} \, \hat{p}_{1} \cdot Q + \hat{p}_{4} \cdot \hat{p}_{1} \, \hat{p}_{2} \cdot Q} \, \frac{2\hat{p}_{2} \cdot \hat{p}_{1}}{\hat{p}_{4} \cdot \hat{p}_{2} \, \hat{p}_{4} \cdot \hat{p}_{1}}$$

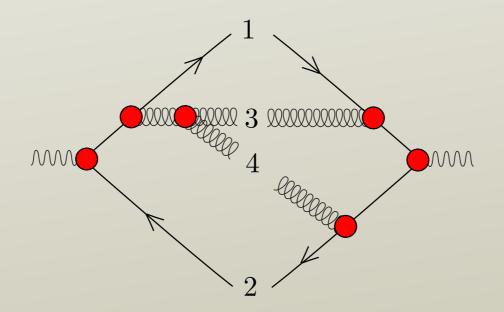
$$\Phi_{13} = \frac{\hat{p}_4 \cdot \hat{p}_3 \ \hat{p}_1 \cdot Q}{\hat{p}_4 \cdot \hat{p}_3 \ \hat{p}_1 \cdot Q + \hat{p}_4 \cdot \hat{p}_1 \ \hat{p}_3 \cdot Q} \ \frac{2\hat{p}_3 \cdot \hat{p}_1}{\hat{p}_4 \cdot \hat{p}_3 \ \hat{p}_4 \cdot \hat{p}_1}$$

- $\Phi_{12} \Phi_{13}$ is not singular when \hat{p}_4 becomes collinear with \hat{p}_1 or \hat{p}_2 or \hat{p}_3 .
- $\Phi_{21} \Phi_{23}$ also has no collinear singularities.
- So $\operatorname{Tr} \Delta \rho$ is singular only when $\hat{p}_4 \to 0$ at constant angle.
- $\operatorname{Tr} \Delta \rho$ is not singular in the regions that give leading logarithms.

Probabilities with LC+

$$\sum_{l} \sum_{k \neq l} \Phi_{lk} \operatorname{Tr} C_{lk}^{LC+} = (\Phi_{31} + \Phi_{32}) \frac{C_{A}}{2} + (\Phi_{13} + \Phi_{23}) C_{F}$$

• This result was obtained by Gustafson (1993) based on Lund diagrams and color coherence.



• This method has been extended by Hamilton, Medves, Salam, Scyboz and Soyez (2020).

Some results

- Choose the thrust distribution as an example.
- Look at the Laplace transform of the thrust distribution.

$$\tilde{g}(\nu) = \frac{1}{\sigma_{\rm H}} \left(1 \middle| e^{-\nu(1-T)} \mathcal{U}(\mu_f^2, Q^2) \middle| \rho_{\rm H} \right)$$

• Manipulate this to the form

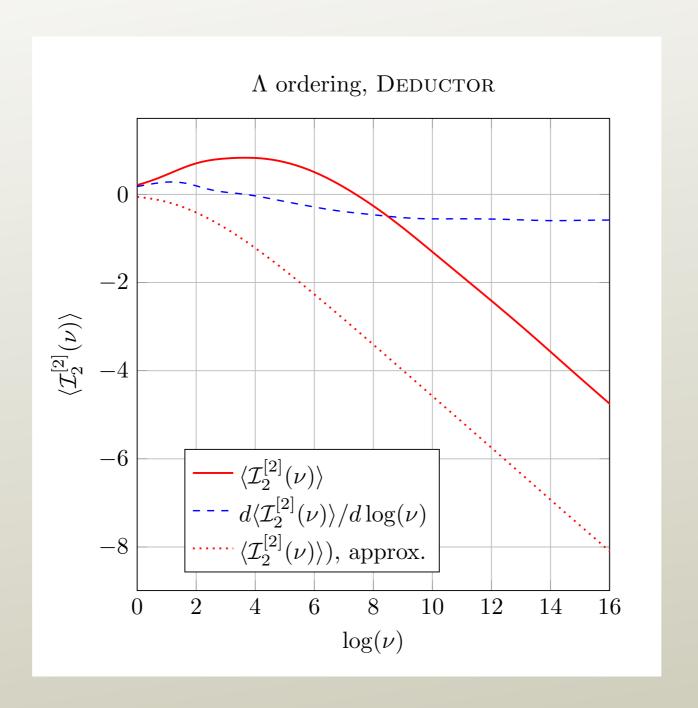
$$\tilde{g}(\nu) = \exp\left(\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \left[\frac{\alpha_{\rm s}(Q^2/\nu)}{2\pi}\right]^n \langle \mathcal{I}_n^{[k]}(\nu)\rangle\right)$$

• $\langle \mathcal{I}_n^{[k]}(\nu) \rangle$ are integrals with k factors of the shower splitting operator.

$$\tilde{g}(\nu) = \exp\left(\sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \left[\frac{\alpha_{\rm s}(Q^2/\nu)}{2\pi}\right]^n \langle \mathcal{I}_n^{[k]}(\nu)\rangle\right)$$

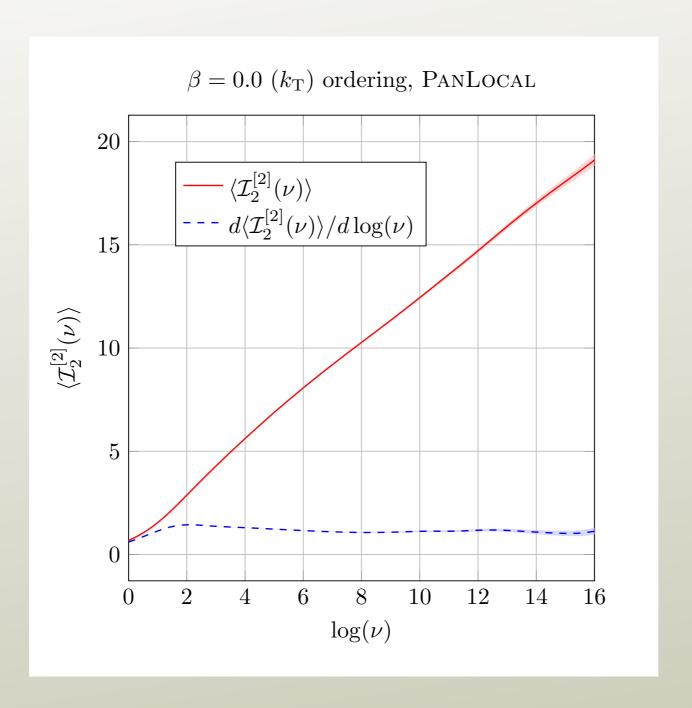
- $\langle \mathcal{I}_n^{[k]}(\nu) \rangle$ are integrals with k factors of the shower splitting operator.
- $\langle \mathcal{I}_n^{[1]}(\nu) \rangle$ gives the NLL summation of thrust logarithms.
- Check that $\langle \mathcal{I}_n^{[k]}(\nu) \rangle$ for k > 1 does not contribute NLL terms.
- Need $\langle \mathcal{I}_n^{[k]}(\nu) \rangle$ to contain no higher power of $\log(\nu)$ than $[\log(\nu)]^{n-1}$.
- Sometimes one can show this analytically for all k and n.
- \bullet Otherwise, use numerical checks for particular k and n.

• $\langle \mathcal{I}_2^{[2]}(\nu) \rangle$ should have no higher power than $[\log(\nu)]^1$ for large ν .



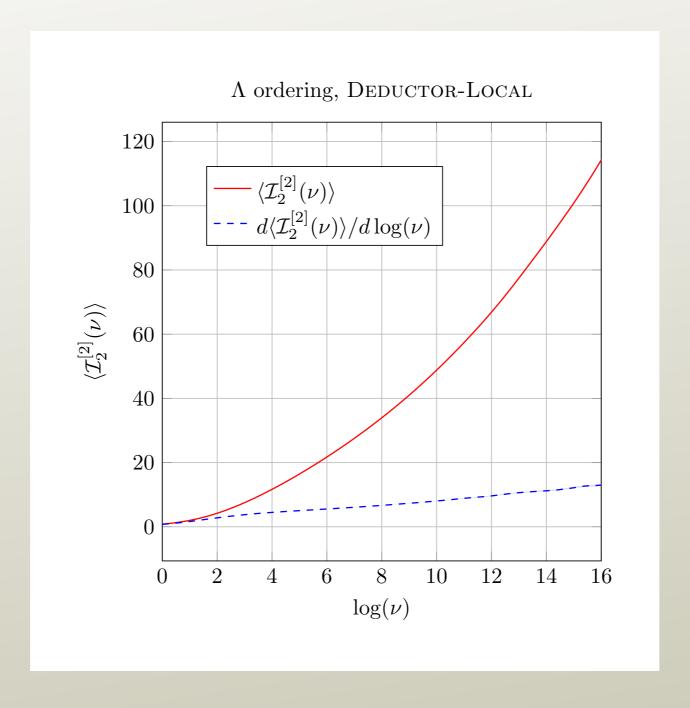
• For Deductor with its default Λ ordering, this works.

• $\langle \mathcal{I}_2^{[2]}(\nu) \rangle$ should have no higher power than $[\log(\nu)]^1$ for large ν .



• For the Panlocal shower (but with full color) this works.

• $\langle \mathcal{I}_2^{[2]}(\nu) \rangle$ should have no higher power than $[\log(\nu)]^1$ for large ν .



• For the Deductor shower with Λ ordering but with a local momentum mapping this fails.