

HGCROC: the front-end readout ASIC for the CMS High Granularity Calorimeter

Frederic DULUCQ, on behalf of the CMS collaboration

F. Bouyjou, G. Bombardi, F. Dulucq, A. El Berni, S. Extier, M. Firlej, T. Fiutowski, F. Guilloux, M. Idzik, C. De La Taille, A. Marchioro, A. Molenda, J. Moron, K. Swientek, D. Thienpont, T. Vergine

Organization for Micro-Electronics desiGn and Applications

HGCAL: Endcap Calorimeters for the CMS Phase-II upgrade

□ HGCAL covers 1.5 < eta < 3.0

- □ Full system maintained at -30°C
 - □ ~ 640 m² of silicon sensors, 6.1M Silicon channels, 0.5 or 1.1 cm² cell size
 - ~ 370 m² of scintillators, 240k scintillatortile channels
- Data readout from all layers
- Trigger readout from alternate layers in CE-E (Electromagnetic calorimeter) and all in CE-H (Hadronic calorimeter)

□ Readout electronics: HGCROC

- Two versions: Silicon and SiPM
- □ Rad. tolerant (200 Mrad, 1.10¹⁶ neq / cm²)
- Power consumption: 15 mW per channel
- Noise: 0.4 fC
- Charge: 0.2 fC to 10 pC
- Pileup mitigation: Fast shaping (peak < 25 ns), precise timing capability (25 ps)

Development history

Omega

- Jan 16: SKIROC2_CMS [TWEPP 2016]
 - SiGe 350 nm 7x9 mm²
 - Dedicated to test beam and analog architecture (TOT)
- May 16: 1st test vehicle TV1
 - CMOS 130 nm 2x1 mm²
 - Dedicated to preamplifier studies
- Dec 16: 2nd test vehicle TV2 [TWEPP 2017]
 - CMOS 130 nm 4x2 mm²
 - Dedicated to technical proposal analog channel study
- July 17: HGCROCv1 [TWEPP 2018]
 - CMOS 130 nm 5x7 mm²
 - All analog and mixed blocks; large part of digital blocks
- Feb 19: HGCROCv2 [CHEF 2019]
 - CMOS 130 nm 15x6 mm²
 - Silicon and SiPM versions (for both 2 and 2A)
 - Final size, packaging and I/Os
 - 600 chips produced and packaged
- Dec 20: HGCROCv3 [This Talk] : Final Chip
 - Fully rad-hard digital Part
 - CMOS 130 nm 15x6 mm²
 - 1 additional memory stage
 - Back to the lab in July

HGCROC2 overview

Overall chip divided in two symmetrical parts

- Each half is made of:
 - 39 channels: 36 channels, 2 common-mode, 1 calibration _
 - Bandgap, voltage reference close to the edge
 - Bias, ADC reference, Master TDC in the middle
 - Main digital block and 3 differential outputs (2x Trigger, 1x Data) _

Measurements

- Charge
 - ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range _ defined by preamplifier gain
 - TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps)
 - ADC: 0.16 fC binning. TOT: 2.5 fC binning
- Time •
 - TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps) _

Two data flows

- DAQ path .
 - 512 depth DRAM (CERN), circular buffer
 - Store the ADC. TOT and TOA data
 - 2 DAQ 1.28 Gbps links (CLPS) _
- Trigger path
 - Sum of 4 (9) channels, linearization, compression over 7 bits
 - 4 Trigger 1.28 Gbps links (CLPS)

Control

- Fast commands
 - 320 MHz clock and 320 MHz commands
 - A 40 MHz extracted, 5 implemented fast commands
- I2C protocol for slow control ٠

Ancillary blocks

- Bandgap (CERN) .
- 10-bits DAC for reference setting .
- 11-bits Calibration DAC for characterization and calibration .
- PLL (IRFU) ٠
- Adjustable phase for mixed domain

ROCv2 test boards - pulse scan reconstruction

Flip-Chip on mezzanine

25

Delay [ns]

0

50

-50

-25

BGA board

25

Delay [ns]

0

75

100

125

50

BGA on mezzanine

BGA

• Using phase shifter to move the sampling clock

75

• Separates effects from the BGA substrate and PCB

100

125

- Falling time (10-90 %): ~ 30 ns, < 20 % at BX+1
- Digital 40 MHz clock coupling on the analog signal on the BGA board (digital noise)

200

100

-50

-25

BOT

ROCv2: charge measurements: ADC range (0 – 160 fC)

- Two 10b-DAC to globally set the pedestal to a desired level
- 5b-DAC to reduce dispersion per channel
 - From ~ 100 ADCu dispersion to ~ 5 ADCu
- Good linearity within +/- 0.5%
- ~ 0.3 fC resolution with 50 pF input capacitor
- Good gain uniformity over the channels

nega

ROCv2: charge measurements: TOT range (160 fC – 10 pC)

Charge measurement from TOT when preamplifier saturates

- 160 fC to 10 pC (for the typical preamplifier gain)
 - 12 bits over 200 ns (LSB of 50 ps)
- Linearity < 2% linearity
 - Small residual wiggles on TOT (digital noise on preamplifier input)
- Resolution around the LSB (~ 50 ps)
 - Some peaks due to outliers (understood and fixed)

ROCv2: Timing performance (TOA)

- Omega
- Minimum threshold for a TOA measurement is 20 fC (limited by the digital coupling)
- Some outliers seen in raw data (left plots)
- Plotting mean value highlights this in some channels (right plots)

TID: thinned chip (70 μ m)

- 3 campaigns at CERN:
 - Si-version at room temperature (Oct 2019)
 - Si-version at cold (Mar & Jun 2020)
 - SiPM-version at room temperature (Aug 2020)
- Irradiation up to 310 Mrad (5 Mrad for SiPM)
- The chip still works after annealing

SEE: 2 campaigns at Louvain (Nov 2019 & Feb 2020)

- Heavy ions LET 5 45 MeV
- I2C acted as expected: cross section follows the usual curve and no errors recorded when auto-correction set. Flips < 2 E-7 Hz/chip
- Bit shifting in the DAQ link (no triplicated Serializer in HGCROCv2)
- No signs of latch-up effects
- No flips seen in ADC/TOA/TOT data

30

40

HGCROC3: final version

Analog Upgrades:

- Increased sensor leakage current compensation
- Increase resolution (12bit) of DAC and phase shifter for calibration
- TOA calibration with a Randomized Pulse Generator

Triplicated Logic

- Memory pointers and calculation logic High Speed Serial links
- SEE tolerant

Control

- SEU tolerant Fast commands
- SEU tolerant I2C Module for slow control

Memory blocks

- Adds trigger derandomizing buffer for DAQ path
- Custom Hamming Encoding at the entry of Circular Buffer
- Hamming Decoding after the L1 FIFO

Checksum

CRC-32 Checksum Encoding before serialization

First measurements July-August 2021

Triplication

- All the control logic was fully triplicated thanks to the TMRG tool:
 - 3 registers / 3 combinatorial logic
 - 3 majority voters (one in each path)
 - Majority voter on the output

- Applied to 20% of the registers in the ASIC \rightarrow power consumption doubled (simulation from HGCROC2 to v3)
- Triplication applied to critical modules: state machines, pointers, counters and parameters
- Datapath protected in memories with SECDED code (Hamming)

ROCv3: Charge measurements (ADC range)

- Injection and readout with the full readout chain enabled
- Internal injection with calibration DAC (low 1,5 fC offset)
- ADC noise ~0.3 fC resolution (1.6 ADCu)
- Good linearity within +/- 0.5%

→ The results are comparable to ROCv2 in terms of noise and linearity

nega

ROCv3: Noise and pedestal measurements

- Measured noise with 50 pF input cap = 0.3 fC (~ 2000 electrons) (0.7 nV / vHz)
- Very low correlated noise contribution: max 0.15
- Comparable with HGCROC2 even if the digital activity was doubled
- ADC pedestal adjustment done manually with local 6b DAC

Full chip (72 channels)

The TDC has been improved to • properly reconstruct the timing (also new layout) and to cope with outliers

2.5

2.0

[us 1.5 1.0

0.5

0.0

125

100

75

50

25

0

:oa jitter [ps]

0

15 fC

15 fC

.3 ps

TWEPP 2021

100

- Minimum threshold set to 15 fC (20 fC for ROCv2)
- The measured jitter is about 13 ps • (25 ps for ROCv2)

Extremely promising results

500

13 ps

charge [fC]

300

Inter

200

relm erren tr.

400

ROCv3: Time over Threshold measuremenst (TOT)

mega

Charge measurement from TOT when preamplifier saturates (max 200 ns)

- 160 fC to 10 pC (for the typical preamplifier gain) with 12-bits TDC (LSB 50ps)
- Linearity < 1% linearity to be confirmed (2% in ROCv2)
- Resolution around 25 ps (50 ps in ROCv2)

Summary

- With HGCROC2, a big step was taken to reach HGCAL requirements. It is an extremely complex chips designed for imaging calorimetry: high dynamic charge, precision timing measurements, high speed links, a lot of digital, harsh radiation environment...
- Measurements are well understood for both Silicon and SiPM versions @CERN, LLR, IRFU, Desy and OMEGA
 - Charge performance reaches the specification: 1 % linearity, for both ADC and TOT
 - Timing performance: time walk calibration feasible, jitter below 25 ps
 - SEEs appear only in the non-triplicated parts of the chip (as expected)
- HGCROC3 integrates all the functionalities + a fully radiation tolerant digital part.
- The first measurements are encouraging but we are only at the beginning:
 - Charge linearity within 1%
 - TOA and TOT jitter less than 13 ps and 25 ps respectively
- Need to check the SEE robustness and to perform systematic measurements to confirm the results
- LLR and OMEGA designing and setting up 2 robots to perform ASIC production testing (foreseen end of 2022)