TWEPP 2021 Topical Workshop on Electronics for Particle Physics

Contribution ID: 32 Type: Oral

Automated firmware generation and continuous

testing for the CMS HGCAL trigger primitive
generator

Thursday, 23 September 2021 14:20 (16 minutes)

A first version of the firmware blocks of the trigger primitive generator for the CMS endcap calorimeter
upgrade (HGCAL) are being implemented, in order to assess the FPGA resource requirements and dimension
the system. For the development of some of these blocks, a data-driven design flow is used to automate the
production of multiple firmware variants based on VHDL and HLS C/C++ templates. In addition, the design
steps are integrated into Continuous Integration tools to automatically test and validate every change, and as
much as possible avoid repetitive human tasks and the associated errors.

Summary (500 words)

The Level 1 (L1) trigger primitive generator (TPG) of the future Phase-2 upgrade High Granularity Calorimeter
(HGCAL) of CMS is composed of two off-detector processing stages. The first stage (Stage 1) mainly performs
a synchronization, reorganization and truncation of the incoming data and time multiplexes its output data to
the second stage. The latter then builds the actual trigger primitives and sends them to the central L1 trigger.
One essential task of the Stage 1 firmware is to group trigger cell (TC) data coming from multiple detector
modules into bins corresponding to projective regions of the detector. A sorting and potential truncation of
these TC data are then applied in each individual bin. Stage 1 processing will run in six identical copies of 24
FPGA s each, with one copy for each 120 degree endcap sector. Each of these 24 FPGAs sees a different portion
of the detector and the TC data routing and sorting is different in each of them. As an example, each FPGA
contains 84 different sorting networks with numbers of inputs varying from 2 to more than 200 in different
combinations for each FPGA. Having a single firmware design for all 24 FPGAs is not possible as it would
require too many resources and excessive latency to handle all the different cases. It is therefore necessary to
design the firmware individually for each of the 24 FPGAs. Doing this manually would be extremely difficult to
develop and maintain. In addition, since the geometry of the HGCAL is still evolving and the connection map
between frontend detector modules and backend FPGAs is not yet fixed, the content of each FPGA will need
to be updated several times in the future. Therefore an automated design workflow is developed, featuring
automated firmware generation and continuous testing and integration. The key inputs to this workflow are
code templates (VHDL and HLS C/C++) and configuration data, containing among other things information
on the detector geometry and the frontend-backend connection map. A template engine, Jinja2, produces
firmware source files from these inputs which can be automatically assembled into Vivado HLS and Vivado
projects. The full workflow pipeline, composed of source code generation, high level synthesis, RTL synthesis,
simulation, and place-and-route, is described as a Directed Acyclic Graph (DAG) and handled by a workflow
manager. In addition the full process is integrated with Gitlab Continuous Integration tools such that every
step can be tested and validated automatically for each update of the code templates and configuration data.
The firmware blocks performing the TC data processing in the HGCAL TPG Stage 1, developed in C/C++ for
some of them and in VHDL for others, will be presented as well as the methods and tools used to automatize
the design process and to update firmware in a continuous fashion, as changes occur (for instance in the
detector design).

Primary authors: SAUVAN, Jean-Baptiste (Centre National de la Recherche Scientifique (FR)); ROMANTEAU,
Thierry (Centre National de la Recherche Scientifique (FR)); BEAUJEAN, Florence Danielle (Centre National de la
Recherche Scientifique (FR))

Presenter: SAUVAN, Jean-Baptiste (Centre National de la Recherche Scientifique (FR))

Session Classification: Programmable Logic, Design Tools and Methods



Track Classification: Programmable Logic, Design Tools and Methods



