

Design, Production, Burn-in and Tests of the hybrid circuits of the Upstream Tracker at the LHCb detector

Federico De Benedetti, INFN Sezione di Milano On behalf of the LHCb UT group

P 國 斜 掌 院 高 能 拘 招 湖 完 所 Institute of High Energy Physics Chinese Academy of Sciences

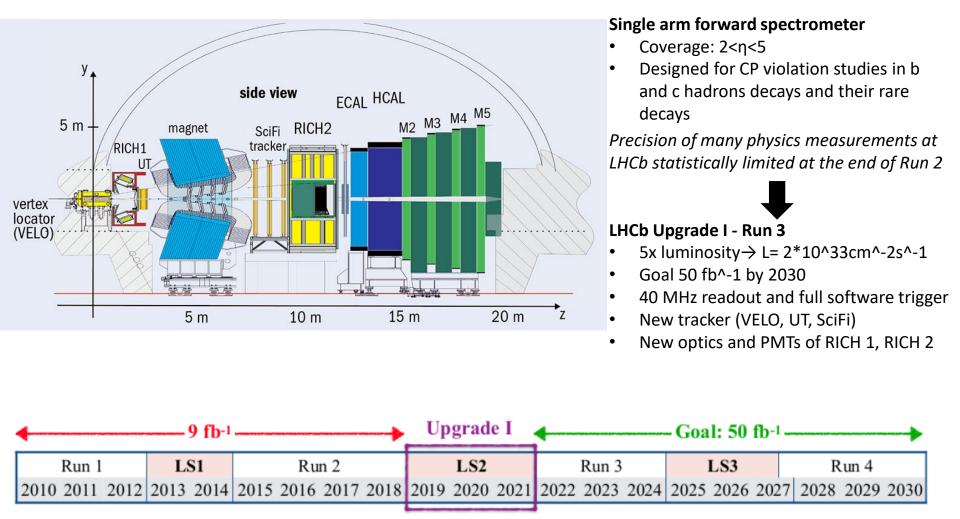
Introduction

- LHCb and Upstream Tracker overview
- SALT chip overview

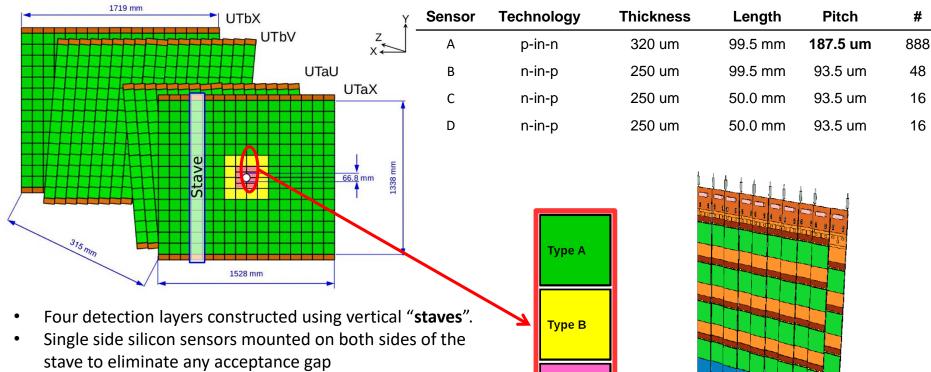
Hybrid Circuit Design

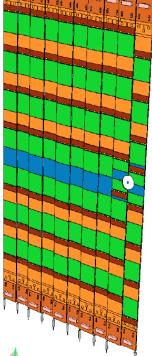
- Hybrid layout
- Hybrid simulations
- Hybrid prototype tests

Hybrid Circuit Production


- Panel design
- ASIC sorting, gluing and alignment
- Wire bonding
- Burn-in test, hardware and software
- Electrical tests and grading
- Visual inspection and shipment

Summary

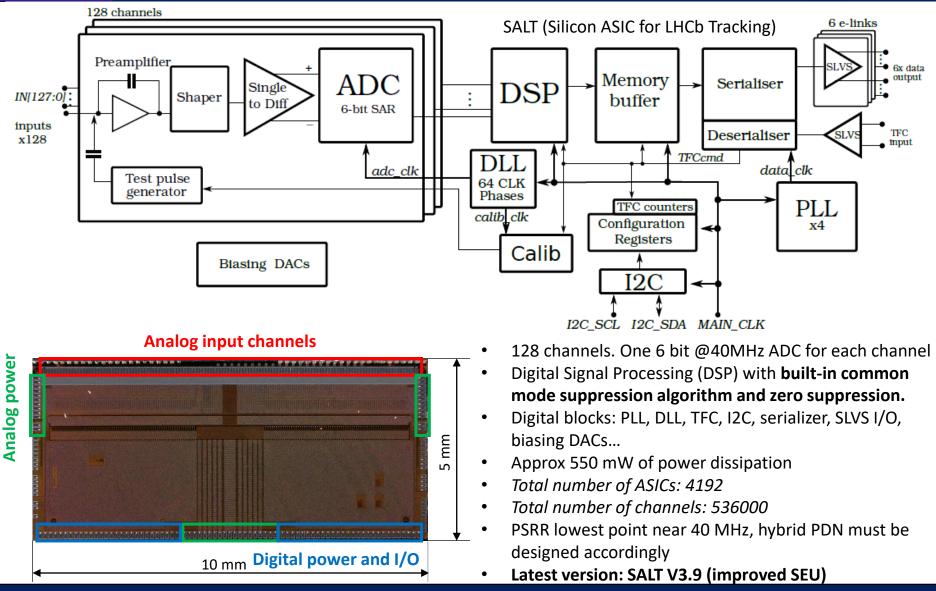

LHCb Detector - Overview



Upstream Tracker - Overview

- Finer segmentation in high-occupancy region.
- Inner-most sensors with circular cut-outs to maximize the acceptance near the beam line.
- Measure of XUVX coordinates: 0° and ±5° strips providing stereo information.
- Four single side silicon sensor designs to cope with occupancy and radiation, produced by Hamamatsu.
- Evaporative CO2 cooling system embedded into the stave

Туре С

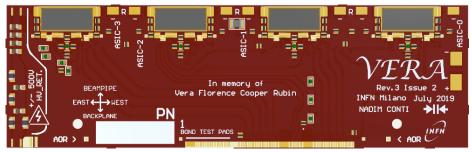

Type D

FN

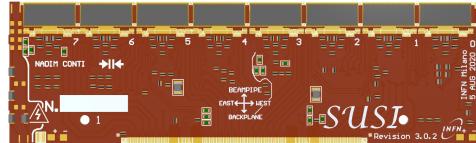
SALT ASIC Overview

Federico De Benedetti TWEPP 2021, 20-24 September

Hybrid Circuit Design and Test


- Hybrid layout
- Hybrid simulations
- Hybrid prototype tests

Hybrid Circuit Design


VERA Hybrid

- 4 ASICs
- Sensor: Type A
- 4 copper layers, thickness: 320um
- 12 E-Links
- N. of produced hybrids 1080

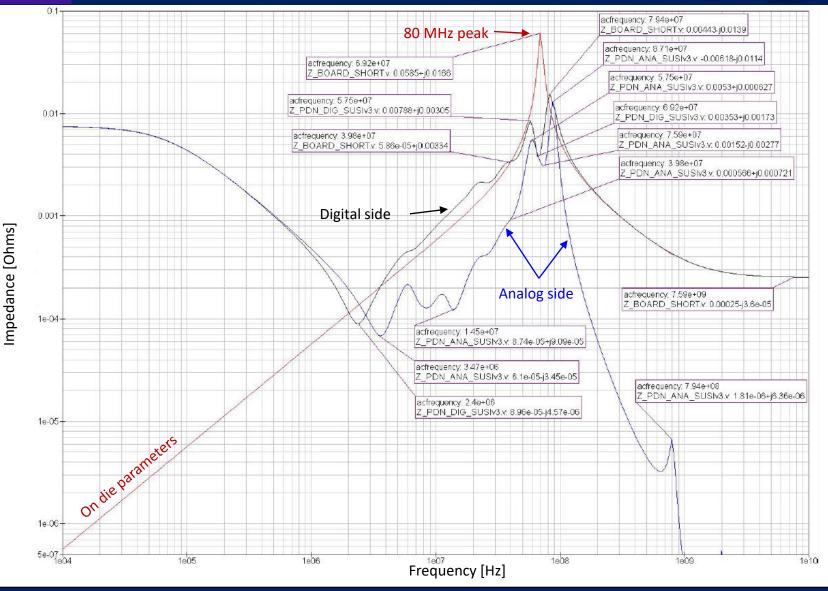
https://edms.cern.ch/document/2631774/1

SUSI Hybrid

- 8 ASICs
- Sensor: Type B,C,D
- 4 copper layers, thickness: 440 um
- 40 E-links
- N. of produce hybrids 110

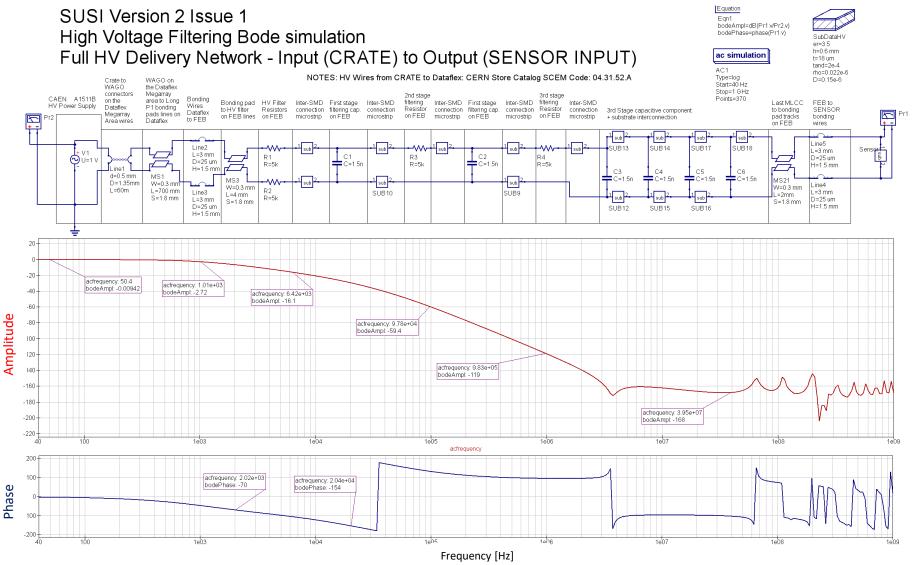
https://edms.cern.ch/file/2404958/1/WorkPackage_RELEASED_SUSI_v3.0.1 13-AUGUST-2020.zip

Common characteristics:


- Material: Low mass flexible circuit made by polyamide
- Power: low voltage @ +1.2V; high voltage @ +-500V, sense lines for low voltage regulation
- I2C, Reset, Clock and TFC @ 40MHz SLVS

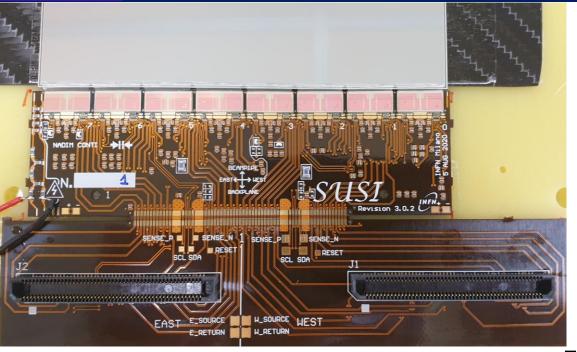
PDN optimized to improve PSRR in the range 40 MHz – 80 MHz

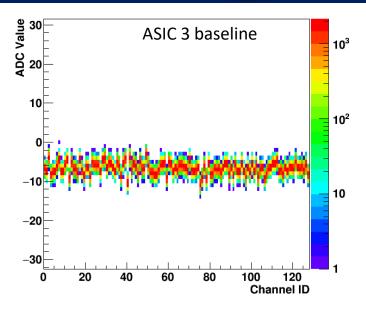
Hybrid Circuit Design – LV filter

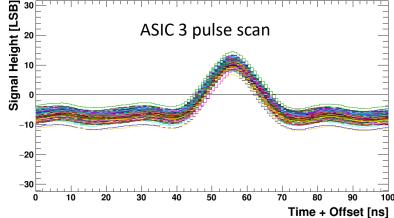


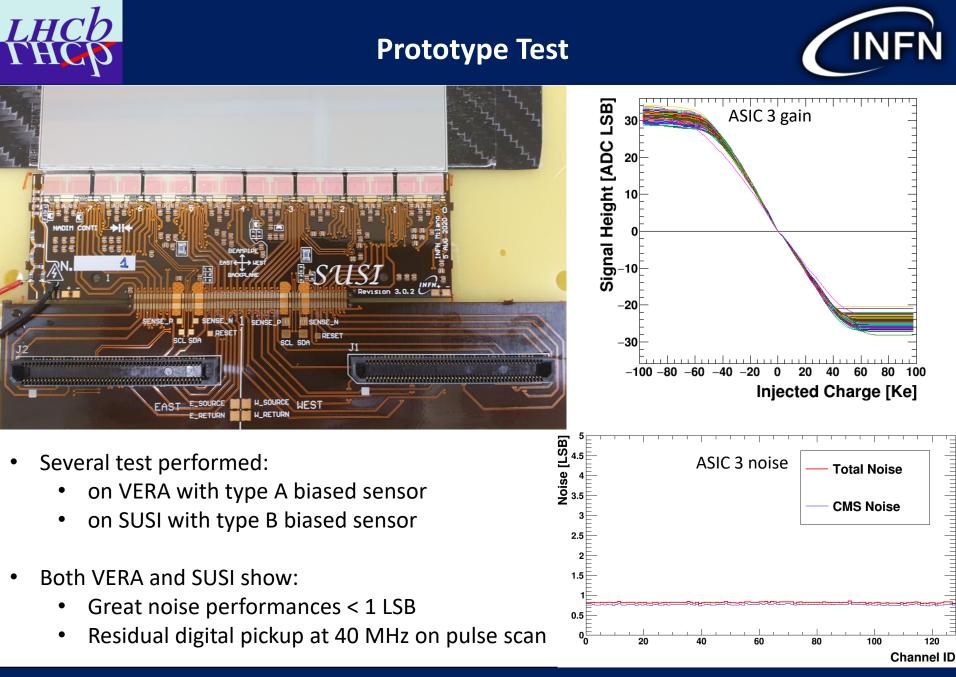
8

Hybrid Circuit Design – HV filter


https://edms.cern.ch/ui/#!master/navigator/document?P:1039891368:100673277:subDocs


Federico De Benedetti TWEPP 2021, 20-24 September

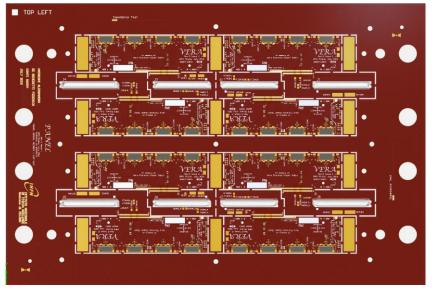

Prototype Test



- Several test performed:
 - on VERA with type A biased sensor
 - on SUSI with type B biased sensor
- Both VERA and SUSI show:
 - Great noise performances < 1 LSB
 - Residual digital pickup at 40 MHz on pulse scan

Hybrid Circuit Production

- Panel design
- ASIC sorting, gluing and alignment
- Wire bonding
- Burn-in test, hardware and software
- Electrical tests and grading
- Visual inspection and shipment



Hybrid Circuit Design - Panel

VERA Panel – 8 circuits (32 ASICs)

- Final hybrids are arranged in panels of 350x235 mm
- Aim to:

Panel

design

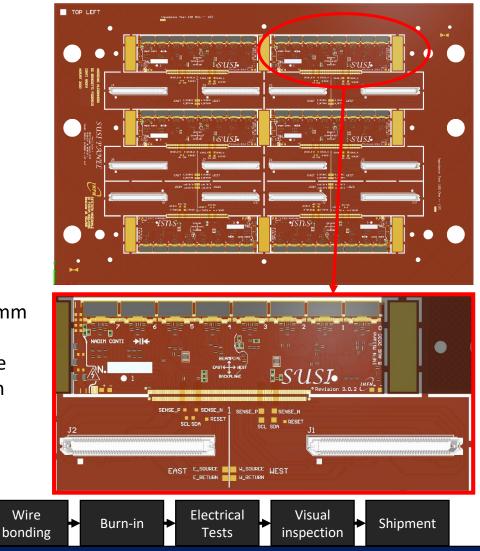
• Reduce PCB fabrication costs, ASIC and wire bonding assembly time, module production

ASIC

gluing

ASIC

alignment

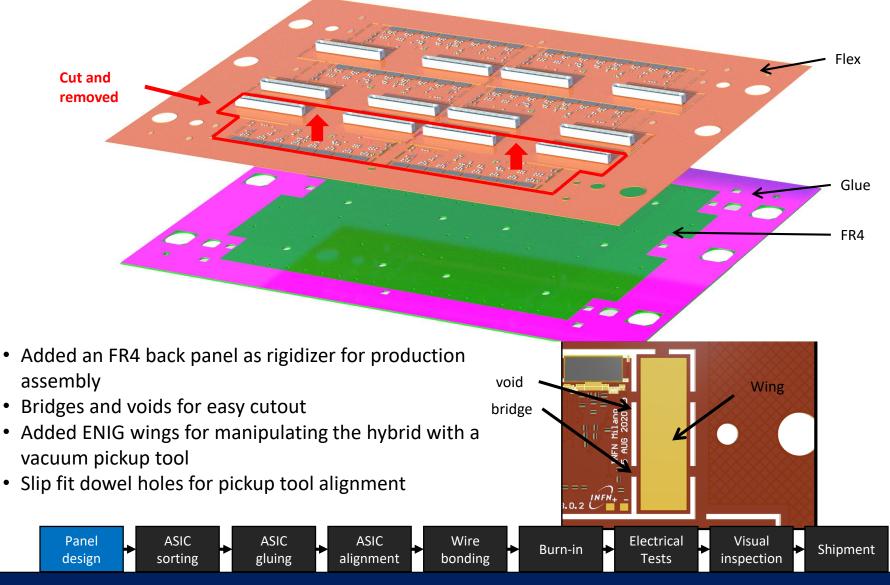

Testing the hybrids through a dedicated connector

Single hybrid cutout for module production

ASIC

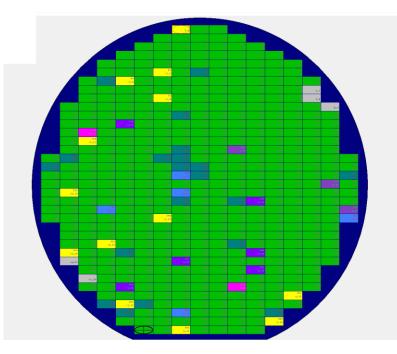
sorting

SUSI Panel – 6 circuits (48 ASICs)



Federico De Benedetti TWEPP 2021, 20-24 September

Hybrid Circuit Design - Panel

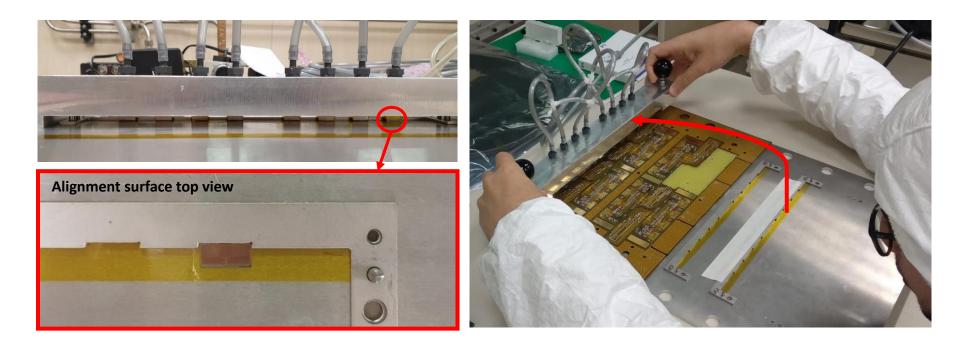


Federico De Benedetti TWEPP 2021, 20-24 September

Production – ASIC Sorting

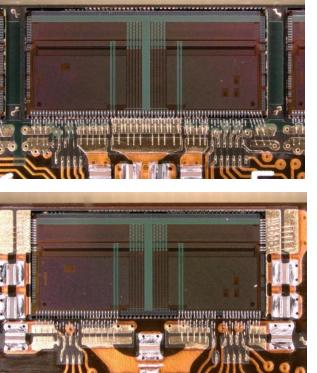
- Manual sorting done in Milan
- Wafer map with good/bad ASICs, provided by UZH
- More than 20 wafers (8000 ASICs) processed
- Yield 80%

Production – ASIC gluing


- LOCTITE ABLESTIK 2902, bi-component glue with silver
- Electrically and thermally conductive
 - Cooling pipe located under the ASICs
- Optimal glue pattern studied for maximum coverage with no glue spill
- X-Ray for qualification

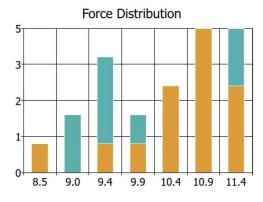
Production – ASIC Alignment

- VERA assembly done using a vacuum pick-up tool developed in Milan
 - ASICs transferred from an alignment surface to the panel
- SUSI assembly done with an automatic pick and place machine from an external company
- Curing at 25°C for 1 day

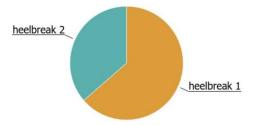


Production – Wire Bonding

- Wire bonding performed with Delvotec G4 6400
- Custom vacuum plates for holding the panel during the wire bond
- 99% Al + 1% Si 25 um diameter wire
- Two different wire disposition for VERA and SUSI hybrids
- Pull test for wire bonding qualification


Federico De Benedetti TWEPP 2021, 20-24 September

Statistics

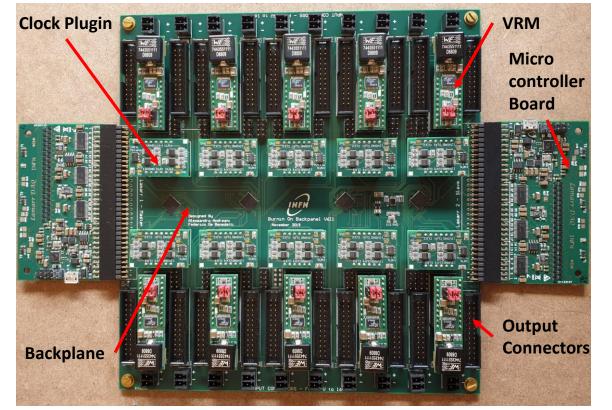

Min=8.2gram, Max=12.1gram, Mean=10.4gram Count=22, Stdev=1.0

Cpk=2.5

(LSL=3.0gram)

Grade Distribution

Production – Burn-in


- Burn-in is introduced to detect premature failures of the produced modules
- 7 days of burn-in at 60°C, hybrids fully powered, clocked and programmed via I2C
- Temperature, humidity and I2C monitoring
- Capable to perform burn-in up to 10 panels at a time

Production - Burn-in Hardware

- Voltage Regulator Module (VRM): step down converter, custom design for 1.2V fine regulation with sense line.
- **Clock plugin:** 40 MHz SLVS buffer tree for clocking the hybrids.

- Microcontroller board: for burn-in monitoring and ASICs programming
- Backplane: I2C multiplexers

0:0:0

Camera 1 - LHCb UT Burn-in Testing Interface

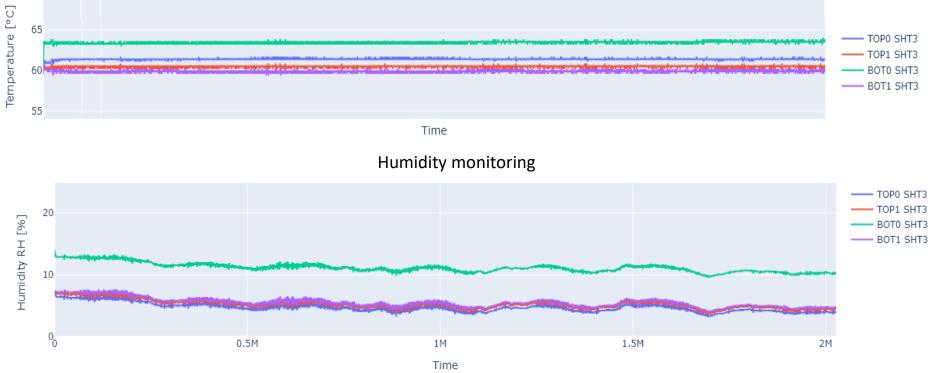
Local Time: Burn-in Elapsed Time: 16:29:33 Day: 0

BOT1	BOT [° C] 41.83 38.01 41.01 36.37	ADC [°C] 42.64 38.83 41.55 38.01	SAM [°C] 43.73 40.46 42.64 39.10	SHT3 [°C] 38.44 35.45 38.65 35.02	Hum [%] 26.68 30.96 27.29 32.79	Flux [mT] -0.37 -0.19 0.02 -0.15	3.3V [V] 3.25 3.26 3.28 3.27	5V [V] 4.98 4.99 4.99 5.00	i [mA] 160 171 159 171	BMP [°C] 0.00 0.00 0.00 0.00	BMP [Pa] 0.00 0.00 0.00 0.00	TOP0, 1 BOT0, 1 TOP1, 1 BOT1, 1 TOP1, E	THERM, na THERM, 78	an,0.00,0. an,0.00,0. 3.47,83.1 2.38,81.1 1,38.83,40	00,0.00,0 00,0.00,0 5,78.86,8 9,75.41,8 0.46,35.4	0.00,0.00, 0.00,0.00, 2.36,80.8 5.52,76.1 5,30.96,-0	81.19,71. 76.17,77. 0,88.31,8 7,88.31,7 .23,3.26,4	63,88.71, 32,76.94, 7.91,91.9 3.89,91.1 4.98,171,	92.77,81. 91.14,78. 5,90.73,7 4,87.91,7 0.00,0.00	97,84.33,7 47,90.73,6 4.27,94.00 8.09,94.41
Therm	nistor I	Monitor	ring [°C	2]																
TOPO	nan	0.00	0.00	0.00	0.00	0.00	81.19	71.63	88.71	92.77	81.97	84.33	77.70	73.13	0.00	0.00	0.00	0.00	0.00	0.00
TOP1	78.86	83.15	78.86	82.36	82.36	88.71	88.71	92.36	87.91	72.76	94.41	77.32	91.95	72.38	85.52	74.65	85.52	73.89	82.75	74.27
BOT0	nan	0.00	0.00	0.00	0.00	0.00	76.17	77.32	76.94	91.14	78.47	90.73	69.76	70.13	0.00	0.00	0.00	0.00	0.00	0.00
BOT1	72.38	81.19	75.41	85.52	76.17	88.31	73.89	91.14	87.91	78.09	94.41	85.92	96.48	81.97	89.92	83.15	91.95	76.94	85.52	77.32
Regist	Register Monitoring																			
TOPO		1	-1								0	0	0	0			0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BOT0											0	0	0	0			0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Programmed by Federico De Benedetti

Burn-in GUI V1.3 - BETA

- Java software for online monitoring ٠
- Log function for offline analisys

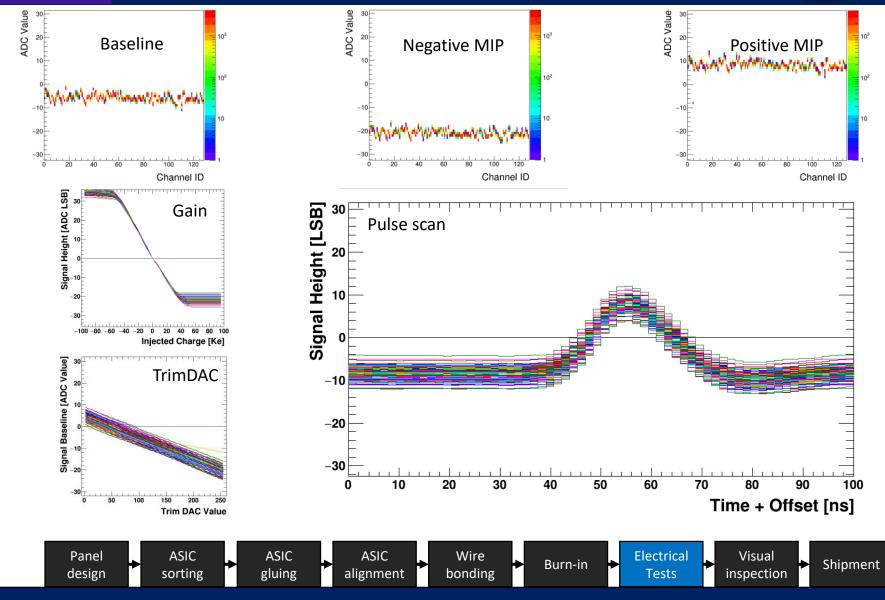


Production - Burn-in Software

Temperature monitoring

- Java software for online monitoring
- Log function for offline analisys

Production - Electrical Test Hardware



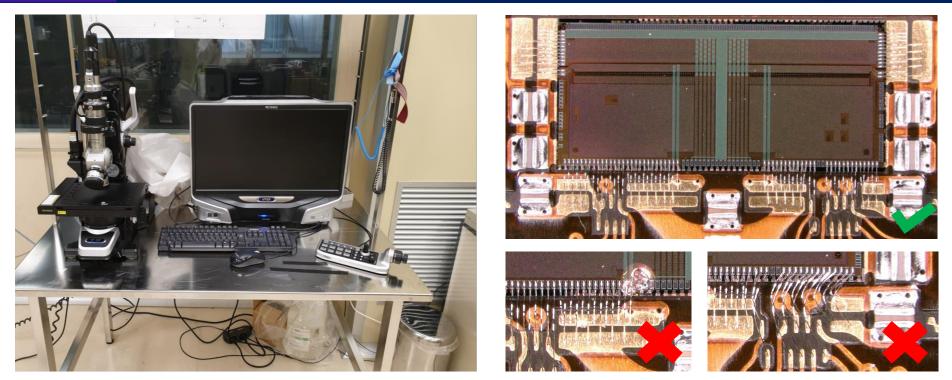
Production - Electrical Test Plots

Federico De Benedetti TWEPP 2021, 20-24 September

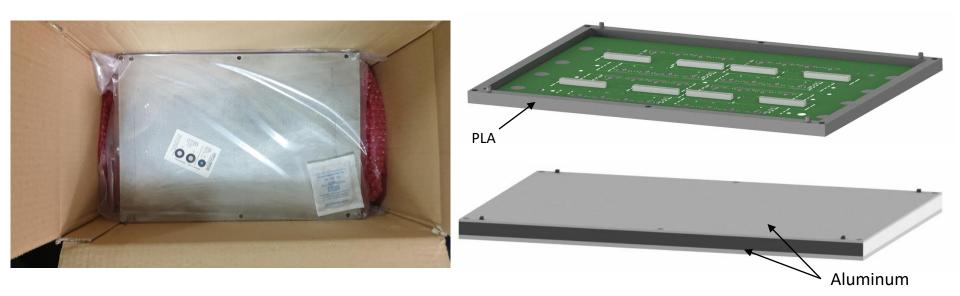
• Automatic report of electrical test is generated

PANEL185_AFTER-HYBRID8	
Noisy channels (RMS>3) BASELINE : Noisy channels (RMS>3) NEG INJECT : Noisy channels (RMS>3) POS INJECT :	
BASELINE Outliers base-mean <7 :	
Saturating BASELINE (modulus<29) : Saturating NEG INJECT (modulus<29): Saturating POS INJECT (modulus<29): Low Gain (GAIN<10 ADC/mip) :	
STATISTICS OF TrimDAC CURVE Number of channels : 512.0	
ntercept mean gaussian 7.35 ntercept sigma gaussian 1.71 Slope mean gaussian -0.0991 Slope sigma gaussian 0.0050	
Channels outside 5 sigmas of the intercept	
Channels outside 5 sigmas of the slope	

• The hybrid is graded accordingly to the table, then uploaded to the official database


Grade	Problematic Channels
A+	0
Α	1
A-	2
B+	3
В	4
B-	5
D	>5
F	Mechanical failure or short circuit

Production - Visual Inspection


 Final optical inspection to detect mechanical problems as: scratches on pads, damaged wire bonds, damaged hybrids.....

Production - Shipment

- All the panels produced in Milano were shipped to Syracuse University (NY)
- Custom transport box developed for the panel
 - PLA 3D printed frame
 - Top and bottom aluminum plates
 - Stackable design
- Vacuum bag to protect the electronics against moisture
- No damaged wire bonds due to the shipment

Summary

Hybrid production:

<u>**ÆHC</u>**</u>

- 1080 VERA hybrids and 110 SUSI hybrids assembled and tested
- All the hybrids shipped to Syracuse University (NY) for stave assembly

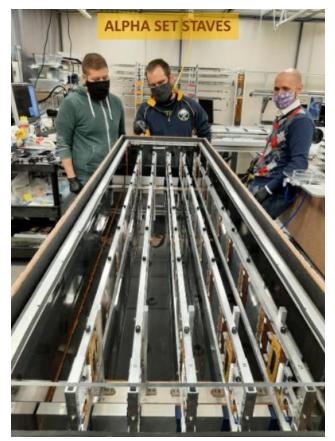
Stave production:

- Module costruction for UT core done, spare module ongoing
- Stave construction is ongoing
- 25 fully instrumented stave at CERN + 5 stave ready for shipment
- All the stave flavours (A,B,C) have been produced

Summary

Hybrid production:

LHC


- 1080 VERA hybrids and 110 SUSI hybrids assembled and tested
- All the hybrids shipped to Syracuse University (NY) for stave assembly

Stave production:

- Module costruction for UT core done, spare module ongoing
- Stave construction is ongoing
- 25 fully instrumented stave at CERN + 5 stave ready for shipment
- All the stave flavours (A,B,C) have been produced

Detector plans:

- Start final stave test at CERN by November 2021
- Aiming to finish the installation underground by February 2022

Backup Slides

Federico De Benedetti TWEPP 2021, 20-24 September

Tools for Hybrid Production

- Pfeiffer vacuum pump used during production, for ASIC alignment and panel gluing
- Pickup tool for VERA ASIC alignment

Tools for Hybrid Production

• Custom vacuum plates designed for holding the panel on the wire bonder and the glue robot

