Design and qualification of the Mu2e electromagnetic calorimeter radiation monitor system

Franco Spinella

on behalf of the Mu2e Calorimeter Group

INFN – Sezione di Pisa
Outline

• The Mu2E experiment: goal and experiment layout
• The Electromagnetic Calorimeter
• Expected radiation on the calorimeter
• Radiation monitoring system: T-RAD
• Sensors used to measure TID and neutron fluence
• Test and calibration of the system
The Mu2e Experiment

- Mu2e searches for Charged Lepton Flavor Violation (CLFV) via the coherent conversion:

\[\mu^- N \rightarrow e^- N \]

at Fermilab muon campus..

- Since the Standard Model prediction is \(~ (\Delta m^2 / M_w^2)^2 < 10^{-54}\), far beyond experimental reach, any observation will be clear evidence for New Physics.

- In case of no observations, Mu2e will improve by a factor \(10^4\) the current world best limit from Sindrum II experiment:

\[
R_{\mu e} = \frac{\Gamma (\mu^- + N(A,Z)) \rightarrow e^- + N(A,Z)}{\Gamma (\mu^- + N(A,Z)) \rightarrow \text{all muon captures}} \leq 8 \times 10^{-17} \text{ @ 90\% C.L.}
\]
Production Solenoid (PS)/Target

- An 8 GeV proton beam hits a tungsten target and produces mostly π.
- A graded magnetic field reflects slow forward μ/π and contains backward μ/π.

Detector Solenoid (DS): stopping target and detectors

- Stops μ^- on Al foils (decay time ~ 864 ns).
- Events reconstructed by detectors, optimized for 105 MeV momentum.
- 1 T B field and 10^{-4} Torr vacuum in the detector zone.

Transport Solenoid (TS)

- π decay to μ.
- Selection and transportation of low momentum μ^-.

L. Morescalchi – INFN Pisa
Calorimeter Design

Undoped CsI + UV-extended SiPMs

- It is radiation hard
- It has a fast emission time
- Emits at 310 nm
- 30% PDE @ 310 nm
- New silicon resin window
- TSV readout, Gain = 10^6

- Two annular disks, R_{in}=374 mm, R_{out}=660 mm, 10 X_0 length, ~ 70 cm separation
- 674 + 674 square x-sec pure CsI crystals, (34×34×200) mm^3, Tyvek + Tedlar wrapping
- Each crystal is read out by two large area UV extended Mu2e SiPM’s (14×20 mm^2)

- Redundant readout: For each crystal, two custom arrays (2×3 of 6×6 mm^2) large area UV-extended SiPMs
Radiation to the calorimeter

- Calorimeter is reached by a high flux of ionizing and non-ionizing (neutrons) particles.
- Potentially very dangerous both on detector and electronics
 - Crystals: Displacement of atoms in the lattice, centre of colors, loss of transmittance
 - SiPM: increase of baseline noise, increase in dark current
 - Electronics: single event upset, latch-up, voltage variations due to the accumulated dose

Crystal Light output

<table>
<thead>
<tr>
<th>Material</th>
<th>Integrated Dose (rad)</th>
<th>Normalized LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaF, SIC2012, (\lambda_{em} = 220) nm</td>
<td>(10^2)</td>
<td>0.4</td>
</tr>
<tr>
<td>CsI SIC2013, 50x50x300 mm(^3)</td>
<td>(10^5)</td>
<td>0.3</td>
</tr>
<tr>
<td>LYSO CPI, 25x25x200 mm(^3)</td>
<td>(10^6)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

ADC

DCDC

Not OK: start @ 35krad, FPGA or ADC problem?
Radiation to the calorimeter 2

- Calorimeter is reached by a high flux of ionizing and non-ionizing (neutrons) particles.
 - Several sources:
 - BEAM-FLASH: all particles within the beam that **do not** represent a muon stopped either in the Al Stopping Target or the muon-beam dump;
 - Stopped μ out-of-target (OOT): μ stopped in the muon-beam dump;
 - e^- from μ decay-in-orbit (DIO): e^- from muon decay in orbit in the Al Stopping Target;
 - Processes associated with the muon-capture in the Al nuclei of the Stopping Target, followed by the nuclear disintegration of the nucleus [3]:
 - Photons;
 - Neutrons;
 - Protons;
 - Deuterons.
 - Monte Carlo simulations with Geant4 and Mars
Simulations output: Total Ionizing dose (Krad/y)

Max dose 6 Krad/y
Simulations output: Total Ionizing dose (Krad/y)

FEE front disk (4 to 0.4) Max dose 6 Krad/y

DAQ Crate (max 0.3) Max dose 0.5 Krad/y
Simulations output: Neutron flux

SiPM front disk

$\phi_n, 1\text{ MeV-eq/}[\text{#}/\text{cm}^2/\text{year}]$

- **Total**
- **FLASH**
- **DEUTERON**
- **OIT**
- **PHOTON**
- **NEUTRON**
- **PROTON**

$R [\text{mm}]$

$< 6 \cdot 10^{10} \text{n}_\text{1MeV-eq/cm}^2/\text{year}$

DAQ Crate front disk

$\phi_n, 1\text{ MeV-eq/}[\text{#}/\text{cm}^2/\text{year}]$

- **Total**
- **FLASH**
- **DEUTERON**
- **OIT**
- **PHOTON**
- **NEUTRON**
- **PROTON**

$R [\text{mm}]$

$< 2 \cdot 10^{10} \text{n}_\text{1MeV-eq/cm}^2/\text{year}$
Radiation monitoring

• Need to measure Total Ionizing Dose (TID), neutron fluence and temperature in several positions of the calorimeter.
 – About 18 “strategic” locations, but scalable
• Limits are :
 • 10^{12} n
 • 50 Krad of TID
 • 0 to 50 °C
• Available space limited:
 • Only few mm between calorimeter and tracker
• Limit the material in front of the calorimeter
• Data must be available to the DCS system
T-RAD system
A T-Rad System is being designed to measure dose, neutron fluence and temperature in selected positions of the Calorimeter

18 sensor mini-boards/disk (each measures TID, n, T)
T-RAD system (2)

- The T-Rad system components:
 - Sensor boards SB
 - Mezzanine MIB
 - DIRAC board: main DAQ node for Mu2e, used only as data transmission and slow control interface

2 (DIRAC + TRAD) mezzanine per disk → each card will read up to 9 sensors boards → 36 sensor boards for the full calorimeter
T-RAD system (3)
The T-Rad sensors for the T-RAD system are:

- Radfet (Varadis VT01) → Dose (rad)
- Digital Thermometer (Maxim Integrated DS18S20Z) → Temperature (T)

For neutrons we decided to use a commercial SiPM as a radiation monitor....

- SiPM (ON Semiconductor MICROFC − 60035 − SMT) → Neutron fluence (n)
T-RAD mezzanine board MB

24-28 V
Dose sensor

- Varadis VT01 it is the RADFET used as Dose Sensor
- VT01 is specified to measure up to 100 krad @ ambient temperatures
- From the Varadis datasheet the RADFET sensing circuit diagram is:
Temperature sensor

- The Temperature Sensor (DS18S20) communicates through the 1-wire bus
- DS18S20 already tested in 2018 @ Enea:
 - Dose rate 1.85 krad/h unshielded (red)
 - Dose rate 0.3 krad/h shielded (blu)

290 Krad
146 hours
Neutron sensor (1)

• The idea is to use a SiPM as a detector for neutron fluence
 ➢ I_{dark} is a function of neutron fluence and temperature
• We measured the trend of I_{dark} vs n at $T=20^\circ$C for several SiPM

$V_{op} = V_{brk} + 3v$
Neutron sensor(2)

- We will use a SiPM similar to the tested SensL, but with lower Vbreakdown.
- ON C-Series SiPM Sensors Vbias is ~ 25V (Mu2e SiPM 170V) → use 28V from DAQ crate

tested @ ENEA-FNG in July.

ON Semiconductor MICROFC – 60035 – SMT

SENSL is now ON Semiconductor
FNG facility, ENEA Frascati lab (Rome)

Frascati Neutron Generator (FNG) is a linear electrostatic accelerator in which up to 1 mA D+ ions are accelerated onto a Tritium target

- **Up to** 10^{12} 14 MeV neutrons/s *in few hours*
- Almost *isotropic source*, flux scales with r^2
- Calibrated at 3% level using alpha particles

$$D + T \rightarrow \alpha + n$$
• 4 SiPM tested at the same time
• V-I curve varying T
• 3 Control loops:
 - T sensor + Peltier cell
 - Vacuum meter + Vacuum Pump
 - Power Supply + pico AMP
SiPM irradiation test setup (2)
test results (preliminary)

Temperature = 0°C

![Graphs showing dark current vs. neutron fluence for different SiPMs at various voltages.](image)
Conclusions

- Mu2e calorimeter is operated in a radioactive environment and needs a radiation monitor system: T-RAD
- Each T-RAD is based on a mezzanine card plus 9 sensor boards
- Neutron fluence is measured as a function of a SiPM Idark
- The idea has been successfully tested in July at the FNG neutron irradiation facility in Frascati near Rome

Thanks for the attention!

This work was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement no 734303, 822185, 858199, 101003460