The Lifetime of the Long-Lived Particle Era

LAWRENCE LEE

24 March 2021 - A Rainbow of Dark Sectors - Aspen Center for Physics

The Lifetime of the Long-Lived Particle Era

LAWRENCE LEE

24 March 2021 - A Rainbow of Dark Sectors - Aspen Center for Physics

Atkinson Hyperlegible BRAILLE INSTITUTE

B8 1Iil

Recognizable Footprints

Character boundaries clearly defined, ensuring understanding across the visual-ability spectrum

Differentiated letterforms

similar letter pairs are differentiated from each other to dramatically increase legibility

QGEFpqir00

Unambiguous Characters

designed to increase legibility and distinction

ER79jr Csa36

THE STANDARD MODEL'S GOT ISSUES

 $\Delta m_H^2/m_H^2 \gg 1$

 $v \ll M_{Pl}$

 $\theta_{QCD} \approx 0$

 $m_{\nu} > 0$

- We have no answers to these problems after all this searching...
 - Let's eke out as much sensitivity from our LHC lamp post as possible
 - Searches for Long-Lived
 Particles (LLPs) huge part of this program

Γ is determined by how the particle decays

e.g. lifetime: $\tau \sim 1/\Gamma$

Particles can gain a large lifetime (small Γ) a number of ways

 $\Gamma \sim \varepsilon^2$

Small phase space

2n

 $\left(\begin{array}{c}m\\-\end{array}\right)$

Small couplings (e.g. RPV decays)

Effective Coupling (+Loop Suppression) And particles do in the SM!

[JPPNP 3695 (2019)] - LL, C. Ohm, A. Soffer, T. Yu

8

And particles do in the SM!

[JPPNP 3695 (2019)] - LL, C. Ohm, A. Soffer, T. Yu

8

And particles do in the SM!

		Small coupling	Small phase space	Scale suppression
SY	GMSB			\checkmark
	AMSB		\checkmark	
SU	Split-SUSY			\checkmark
	RPV	\checkmark		
	Twin Higgs	\checkmark		
NN	Quirky Little Higgs	\checkmark		
	Folded SUSY		\checkmark	
I	Freeze-in	\checkmark		
NO	Asymmetric			\checkmark
	Co-annihilation		\checkmark	
Portals	Singlet Scalars	\checkmark		
	ALPs			\checkmark
	Dark Photons	\checkmark		
	Heavy Neutrinos			\checkmark

Why is this hard?

ATLAS/CMS were **not designed** to look for **displaced** new physics

Reconstruction algorithms, cylindrical geometry, trigger, all designed assuming particles emerge from the collision point

> A Long-Lived Particle could break any of these! Existing mass limits may be much weaker!

[JPPNP 3695 (2019)] - LL, C. Ohm, A. Soffer, T. Yu

Plots that look like this have become stressful...

But these represent something good: Excitement from our community!

We found a golden ticket! The solution to all our worries!

Disappearing Tracks

p

p

q

ATLAS-CONF-2021-015

Run: 308084 Event: 2658892674 2016-09-10 04:14:14 CEST

n.b. Slide definitely	over-s	selling	exclusions
-----------------------	--------	---------	------------

	nocially	cinco	tho	hoginning	of tho		hoom	wido	cianaturo	covorado
22	pecially	SIIICE	une	beginning	or the	LLF		wide	Signature	coverage

We've looked in most of these places now and see nothing.

Production	$\gamma\gamma(+ ext{inv.})$	$\gamma + { m inv.}$	<i>jj</i> (+inv.)	jjℓ	$\ell^+\ell^-(+inv.)$	$\ell^+_{\alpha}\ell^{\beta\neq\alpha}(+\text{inv.})$	
DPP: sneutrino pair	+	SUSY	SUSY	SUSY	SUSY	SUSY	
or neutralino pair							
HP: squark pair, $\tilde{q} \rightarrow jX$	+	SUSY	SUSY	SUSY	SUSY	SUSY	
or gluino pair $\tilde{g} \rightarrow jjX$							π
HP: slepton pair, $\tilde{\ell} \to \ell X$	+	SUSY	SUSY	SUSY	SUSY	SUSY	Ľ,
or chargino pair, $\tilde{\chi} \to WX$							Ξ
HIG: $h \to XX$	Higgs, DM*	t	Higgs, DM*	RHν	Higgs, DM*	RHv*	<u> </u>
or $\rightarrow XX + inv.$					RHν*		2
HIG: $h \to X + \text{inv.}$	DM*, RHν	t	DM*	RHν	DM*	+	
RES: $Z(Z') \to XX$	Z', DM*	+	Z', DM*	RHν	Z', DM*	+	
or $\rightarrow XX + inv.$							
RES: $Z(Z') \rightarrow X + \text{inv.}$	DM	+	DM	RHν	DM	†	
CC: $W(W') \rightarrow \ell X$	+	+	RHv*	RHν	RHv*	RHv*	

$\ell + inv.$	jj(+inv.)	jjℓ	$\ell\gamma$	σ
				Ð
SUSY	SUSY	SUSY	+	Ð
DM*	DM*			Jal
SUSY	SUSY	SUSY	+	$\overline{\Box}$
DM*	DM*			Š
Z', DM*	Z', DM*	Z′	+	2
DM*	DM*	RHν	+	
				I
$i \perp inv$	$ii(\pm iny)$	il	in	
<i>J</i> + mv.))(+ 1110.)	J.		
SUSY	SUSY	SUSY	+	
	ℓ + inv. SUSY DM* SUSY DM* Z', DM* DM* j + inv. SUSY	ℓ + inv. $jj(+inv.)$ SUSYSUSYDM*DM*SUSYSUSYDM*DM*Z', DM*Z', DM*DM*DM*j + inv. $jj(+inv.)$ SUSYSUSY	$ \begin{array}{ c c c } \ell + \mathrm{inv.} & jj(+\mathrm{inv.}) & jj\ell \\ \hline & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} \\ \mathrm{DM}^* & \mathrm{DM}^* & & \\ \hline & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} \\ \mathrm{DM}^* & \mathrm{DM}^* & & \\ \hline & \mathrm{Z}', \mathrm{DM}^* & \mathrm{Z}' \\ \hline & \mathrm{DM}^* & \mathrm{DM}^* & \mathrm{RH}\nu \\ \hline & & \\ \hline & & \\ j + \mathrm{inv.} & jj(+\mathrm{inv.}) & j\ell \\ \hline & \\ \hline & & \\ \end{array} $	$ \begin{array}{ c c c c } \ell + \mathrm{inv.} & jj(+\mathrm{inv.}) & jj\ell & \ell\gamma \\ \hline & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} & 1 \\ \hline & \mathrm{DM^{\ast}} & \mathrm{DM^{\ast}} & \mathrm{SUSY} & 1 \\ \hline & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} & 1 \\ \hline & \mathrm{DM^{\ast}} & \mathrm{DM^{\ast}} & \mathrm{Z'} & 1 \\ \hline & \mathrm{DM^{\ast}} & \mathrm{DM^{\ast}} & \mathrm{RH}\nu & 1 \\ \hline & j + \mathrm{inv.} & jj(+\mathrm{inv.}) & j\ell & j\gamma \\ \hline & \mathrm{SUSY} & \mathrm{SUSY} & \mathrm{SUSY} & 1 \\ \hline \end{array} $

jjℓ	$\ell^+\ell^-(+inv.)$	$\ell^+_{\alpha}\ell^{\beta\neq\alpha}(+\text{inv.})$		Decay	$\ell + inv.$	jj(+inv.)
SUSY	SUSY	SUSY		Tioduction		
				DPP: chargino pair	SUSY	SUSY
SUSY	SUSY	SUSY		or slepton pair	DM*	DM*
			al	HP: $\tilde{q} \rightarrow jX$	SUSY	SUSY
SUSY	SUSY	SUSY	tra		DM*	DM*
			n	RES: $Z' \to XX$	Z', DM*	Z', DM*
RΗν	Higgs, DM* RHv*	RHv*	N N	CC: $W' \to X + inv.$	DM*	DM*
RHν	DM*	+				
RHv	Z', DM*	+		Decay	j + inv.	jj(+inv.)
				Production		
RHν	DM	+		DPP: squark pair	SUSY	SUSY
DLL	DLL.*	DLL.*		or aluino noir		

[<u>1903.04497</u>] - J Alimena, et al

QCD Charged

LHC RUN-3, RUN-4+

- LLP searches continue into the HL-LHC era
- Also dedicated LLP detector ideas!
- FASER is funded and under construction!
- Going to push the HL-LHC program heavily in the direction of LLPs

Slide borrowed from O. Brandt

FUTURE COLLIDERS

- Building new detectors -> Opportunity to not preclude LLPs in detector designs
- Starting to see lots of LLP projections for future
- <u>Session at Snowmass community planning</u> meeting in Oct
 - We outlined important considerations for next generation of experiments
 - Detector readout constraints, timing resolution, detector granularity
- Now that the Higgs is found, the **primary** goal of any future collider is BSM
 - So LLPs can carry real monetary priority

HEP Detectors: Requirements from Long-Lived Particle Searches

Yuri Gershtein, Lawrence Lee, Jenny List, Henry Lubatti, Simone Pagan Griso, Sheldon Stone

Introduction

- New detector (and collider) designs need to explicitly take into account the many, varied LLP signatures from their inception
 - Ignoring LLPs at this stage can easily preclude future searches
 We've brainstormed a list of some key topics for
- discussion
- Goals:
 - Spark discussion (minimal discussion slide-by-slide, larger discussion at end)
 - Outline major detector topics relevant for LLP searches
 - Frame which studies should be prioritized by the community over the year

Please use the Raise Hand feature or chat (Zoom or #cpm_topic_131) to comment.

Aside: Collider Environments (ee, µµ, pp, AA, Ap, ep, ...)

- Properties of the collider itself can play a role in LLP sensitivity
 - Achievable integrated luminosity / Achievable hard scatter

H. Russell

- LLPs are no longer the golden ticket they once were!
- Yes, let's not preclude them in the future...
- But there's no long-lived zoo that was waiting to be found at ~O(100 GeV)

- Can **not** sacrifice finding a 2 TeV stop or a 500 GeV Higgsino WIMP to increase one LLP signature
- When it comes to building experiments, it's sometimes a zerosum game...

TLLP

LLPs will start to wane a bit...

But only because we've done our job! WANTED TO STRETCH THE LIMITS OF OUR LAMP POST

BUT LET'S BE CAREFUL BEFORE WE MOVE THE LAMPPOST ENTIRELY

IT WAS THERE FOR A REASON

IT WAS THERE FOR A REASON

LLPs will start to wane a bit... WANTED TO STRETCH THE LIMITS OF OUR LAM

WE'RE DOING EXACTLY OUR JOB WE'RE DOING EXACTLY OUR JOB AND PROBING EVERY LAST THING WE CAN!

Search for Stopped Gluinos in pp Co	llisions at √s = 7 TeV	101 ⁻ (her	1.5861 ⊳-ex)r≉	10/pb 10.11	03/PhysRevLett.106.011801
Search for Quark Compositeness with pp Collis Search	h the Dijet Centrality Ra er Pape / pp Collisions at MS	er fro (her	0.4420 DM D-ex)⊡?	CMS	Exotica!
Gluino pair, squark pair, R- hadron; pixel ionisation, calorimeter timing	Phys.Lett. B701 (2011) 1-19	10-MAR- 11	7	34 pb⁻¹	Documents 1103.1984 Inspire HepData Internal
Gluino pair, squark pair, gluino- squar Gluino squark; 1 lepton	Phys.Lett. B701 er Pape <u>106 (2011)</u> 131802	25-FEB- er fro 11	5 7	35 pb ⁻¹ ATLA 35 pb ⁻¹	Documents 1102.5290 Inspire SSUSY! hepData Internal
Highly ionizing particle search 7 TeV 2010	Phys.Lett. B698 (2011) 353-370	02-FEB- 11	7	3.1 pb ⁻¹	Documents 1102.0459 Inspire
Di-photons plus MET search 7 TeV 2010	Phys.Rev.Lett. 106 (2011)	02-JAN-	7	3.1 pb ⁻¹	Documents 1012.4272 Inspire
Dijet angular search 7 TeV 2010	(2011) 327-345	2000 U	7	3.1 pb ⁻¹	Internal
Dijet resonance search 7 TeV 2010	Phys. Rev. Lett. 105 (2010) 161801	13-AUG- 10	7	315 nb ⁻¹	Documents 1008.2461 Inspire

Because the time of decay is exponential (in rest frame), getting the largest, closest detector is important.

Requiring pair-produced LLPs to both decay in far away detectors doesn't make sense...

WE WERE A BIT OPTIMISTIC...

R-HADRON SPECTRUM

- SUSY Gluino is a color octet (like a gluon)
 - Hadronization process is just SM-dynamics (2)
 - (Unfortunately it's QCD 😁)
- Gluino picks up SM spectator partons to form a color-singlet
- Population of R-Hadrons can vary w/ model
 - Using different constituent quark mass assumptions, we assemble space of RH spectra
 - Giving their frequency and mass spectrum
 - The properties of the lightest R-Hadron are particularly important

ATL-PHYS-PUB-2019-019

ATL-PHYS-PUB-2019-019

INTERACTIONS

- As R-Hadron travels through material, lots of hadronic interactions
- Many interactions will change species, and many will even change electric charge!
- R-Hadron-to-nucleon interaction cross section using "Triple Regge" model

ENERGY LOSS

- R-Hadrons will lose energy as they traverse the detector
 - Both EM and hadronic effects contribute
- Interacting LLPs could lose all momentum and come to **rest** in detector material
 - Depending on τ, could decay much later
 - (Keep an eye out for an updated ATLAS search...)

IMPLEMENTATION

Elec Charge Color

- Simulating any charged LLP is a technical challenge!
 - Complex dance between GEANT and Pythia
 - Breaks default MC data flow paradigm
- Every ATLAS search for a EM/ strongly charged LLP has used this setup

LARGE RADIUS TRACKING

- Default tracking on ATLAS turns off at $d_0 > 10$ mm
- In order to retain reco efficiency at larger d₀, additional tracking step run
 - Uses unused hits from nominal tracking
- Even reasonably modeled in simulation
- Computationally expensive, so run on a subset of events from special Raw data stream written out at Tier0

ATL-PHYS-PUB-2017-014

DISPLACED VERTEXING

- We use these tracks (and standard tracks) to form displaced vertices
 - Retains efficiency at large radius
- Finds 2-track seed vertices
- Merges them into multitrack vertices
- Merges compatible vertices and attaches compatible tracks

Number of selected tracks

ATLAS-CONF-2021-015

Run: 308084 Event: 2658892674 2016-09-10 04:14:14 CEST

p

q

Remember: The proper time of decay **always** sampled from an exponential

Getting the largest, closest detector is important.

Where to look for long-lived particles?

Floor det

≲100m

Chou et al 1606.06298

Surface

≤100m

56 n

ANUBIS

Bauer, OB, Lee, Ohm 1909.13022

Feng, et al 1710.09387

12,2

(ATLAS POINT 1)

cranes can support up to 270 t

Current proposal: Four evenly spaced tracking stations with a cross-sectional area of 230 m² each

	Parameter	Specification
	Time resolution	$\delta t \lesssim 0.5 \text{ ns}$
>	Angular resolution	$\delta \alpha \lesssim 0.01 \text{ rad}$
Ζ	Spatial resolution	$\delta x, \delta z \lesssim 0.5 \text{ cm}$
	Per-layer hit efficiency	$\varepsilon\gtrsim98\%$

Angular & spatial resolution:

- Reconstruct displaced vertices: reach $m_{\rm LLP} \gtrsim K_L$ for $m_{\rm mediator} \approx 100 {\rm ~GeV}$
- Fiducialise volume

Sensitivity study for exotic Higgs decays

 $\mathcal{L} = \lambda s^2 H^{\dagger} H \qquad h \to ss, s \to SM SM$

