Cosmological Probes of Dark Matter Energy Deposition

Hongwan Liu (NYU/Princeton)

A Rainbow of Dark Sectors 24 Mar 2021

Hongwan Liu

but what is it? **STERILE NEUTRINOS**

0

SIMPs

0

image credit: Sandbox Studio, Chicago

NEUTRALINOS

- -

Can we be agnostic, and still learn something about DM?

Miny...

image credit: Sandbox Studio, Chicago

Meeny...

Moe?

- -

Dark Matter Annihilation

SM

SM

D

DM

Katelin Schutz (22 Mar) Miguel Sánchez-Conde (23 Mar) Seyda Ipek (23 Mar)

Motivated by ideas for dark matter production in the early universe.

Hongwan Liu

McDonald Institute Astroparticle Seminar 26 Jan 2021

DM is cosmologically stable, but small couplings to the SM can lead to decays if DM not protected by symmetry.

McDonald Institute Astroparticle Seminar 26 Jan 2021

Hongwan Liu

Axion-Like Particles

JiJi Fan, Kerstin Perez (22 Mar) Lindley Winslow (23 Mar)

Sterile Neutrinos Kerstin Perez (22 Mar)

Cosmological probes of highenergy particles are highly effective: high densities, long duration and pristine systems.

Cosmological Probes

Cosmic Microwave Background (CMB) Power Spectrum

Big-Bang Nucleosynthesis

Hongwan Liu

Intergalactic Medium (IGM) Temperature from Lyman- α Forest

Lyman-a Constraints on Cosmic Heating from Dark Matter Annihilation and Decay

Gregory Ridgway

HL, Gregory W. Ridgway and Tracy Slatyer arXiv:1904.09296 HL, Wenzer Qin, Gregory W. Ridgway and Tracy Slatyer arXiv:2008.01084

A Rainbow of Dark Sectors 24 Mar 2021

Hongwan Liu (NYU/Princeton)

Wenzer Qin

Tracy Slatyer

Histories without Exotic Energy Injection

Hongwan Liu

Well-understood before star formation: Precise calculations used in CMB analysis.

A Rainbow of Dark Sectors 24 Mar 2021

How Much Heat from DM?

- 1. Every decay releases m_{γ} worth of energy.
- 2. n_{γ}/τ decays per volume per time.
- 3. n_R is the number density of baryons.
- Energy per baryon $\sim m_{\chi} \times \frac{n_{\chi}}{\tau} \times \frac{1}{n_R} \times Age$ of the universe

 $\sim 2.5 \times 10^6 \,\mathrm{K} \left(\frac{10^{25} \,\mathrm{s}}{\tau} \right) \qquad T_m \sim 10 \,\mathrm{K} \text{ at star formation} \\ T_m \sim 10^4 \,\mathrm{K} \text{ after reionization}$

Dark Matter Injection Matter Temperature $\dot{T}_m = \dots + \frac{2f_{\text{heat}}(z, \mathbf{x}_e)}{3(1 + f_{\text{He}} + x_e)n_{\text{H}}} \left(\frac{dE}{dV dt}\right)_{\text{ini}}$

Dark matter energy injection heats IGM, deposition parametrized by efficiency factor. Nontrivial to calculate.

Ionization

$$\dot{x}_{e} = \dots + \left[\frac{f_{ion}(z, \mathbf{x}_{e})}{\Re n_{H}} + \frac{(1 - \mathscr{C})f_{exc}(z, \mathbf{x}_{e})}{0.75\Re n_{H}}\right] \left(\frac{dE}{dV dt}\right)_{int}$$

HL, Ridgway & Slatyer 1904.09296 github.com/hongwanliu/DarkHistory

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Lyman-*a* Forest

Jeans broadening

A Rainbo

Intergalactic medium (IGM) temperature can be deduced from Lyman- α forest measurements.

Hongwan Liu

of Dark Sectors 24 Mar 2021

A Rainbov

Hongwan Liu

Both ionization and thermal histories are becoming well-measured.

v of Dark Sectors 24 Mar 2021

Ionization History

Planck Collab. 1807.06209

set by DM model (DarkHistory)

constrained by Planck

Hongwan Liu

Avoid direct modelling of reionization, which is **highly uncertain**.

For each DM decay/annihilation model, scan over ionization histories.

Excess assigned to photoionization (i.e. caused by star formation and reionization).

collisional ionization, recombination...

photoionization from stars (only unknown)

A Rainbow of Dark Sectors 24 Mar 2021

 $\dot{x}_e^{\text{Pl}} = \dot{x}_e^{\text{DM}}(m_{\gamma}, \Gamma, x_e) + \dot{x}_e^{\text{atom}}(T_{\text{m}}, x_e) + \dot{x}_e^{\star}$

Photoionization causes heating, T^{\star} . i) Conservative: $\dot{T}^{\star} = 0$. ii) Photoheating Model: $\dot{T}^{\star} = \dot{x}_{\rho}^{\star} \Delta T$.

A Rainbow of Dark Sectors 24 Mar 2021

Histories

Conservative: $\dot{T}^{\star} = 0$

Photoheating I: $\dot{T}^{\star} = \dot{x}_{e}^{\star} \Delta T$

 $0 \,{
m K} < \Delta T < 3 \times 10^4 \,{
m K}$ (+ model after full ionization)

Hongwan Liu

Photoheating II: $\dot{T}^{\star} = \dot{x}^{\star}_{\rho} \Delta T$

 $2 \times 10^4 \,\mathrm{K} < \Delta T < 3 \times 10^4 \,\mathrm{K}$ (+ model after full ionization)

A Rainbow of Dark Sectors 24 Mar 2021

Competitive with other constraints for dark matter decay into electron/positron pairs.

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Constraints — p-wave Annihilation ¹ ¹ ² ² ² ² ² ² ² ¹⁰⁻¹² p-wave annihilation, $\langle \sigma v \rangle \propto v^2$ $\frac{10}{10^{-18}}$ $\langle \sigma v \rangle = (\sigma v)_{\text{ref}} \frac{v^2}{v_{\text{ref}}^2} + \frac{100 \text{ km/s}}{100 \text{ km/s}}$ $\begin{array}{c} \mathbf{\hat{H}} & 10^{-21} \\ \mathbf{\hat{H}} & \mathbf{\hat{H}} \\ \mathbf{\hat{H}} \\ \mathbf{\hat{H}} & \mathbf{\hat{H}} \\ \mathbf{\hat{H}}$ Boost from structure included, both density and dispersion. HL, Slatyer and Zavala 1604.02457

Hongwan Liu

Complementary with other probes: much less dependent on Milky Way DM distribution/cosmic ray transport.

A Rainbow of Dark Sectors 24 Mar 2021

Dark matter energy injection can be constrained through cosmological probes, including IGM temperature measurements.

Backup Slides

Hongwan Liu (NYU/Princeton)

A Rainbow of Dark Sectors 24 Mar 2021

Recombination

Hongwan Liu

Photons with energy > 13.6 eV are **abundant**: hydrogen atoms are **ionized**.

A Rainbow of Dark Sectors 24 Mar 2021

Recombination

Hongwan Liu

Universe expands, cools: protons and electrons recombines, Universe becomes **neutral** and **transparent**.

A Rainbow of Dark Sectors 24 Mar 2021

Thermal Decoupling 10^{4} \sim $\leq 10^3$ \sim T_m Matter Temperature 10^{2} \sim \sim \sim 0.1 \sim

Compton scattering between free electrons and CMB photons keep matter and the CMB in thermal contact until $z \sim 150$.

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Redshifting

Simple thermal history between recombination and star formation.

Three-Level Atom

Matter Temperature

Compton heating

 $\dot{T}_m = -2HT_m + \Gamma_C(T_{\text{CMB}} - T_m)$ Adiabatic cooling

Ionization

Photoionization $\dot{x}_{e} = -\mathscr{C}\left[n_{H}x_{e}^{2}\alpha_{B} - 4(1 - x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right]$ Recombination

> Simple model captures most of the physics of the cosmic ionization and thermal histories.

Hongwan Liu

Peebles Astrophys. J 153, 1968 Zel'dovich+ Soviet Physics JETP 28, 1969

A Rainbow of Dark Sectors 24 Mar 2021

Three-Level Atom

Matter Temperature

Hongwan Liu

$$\dot{T}_m = -2HT_m + \Gamma_C(T_{\text{CMB}} - T_m)$$

Adiabatic cooling Compton heating

of Dark Sectors 24 Mar 2021

Matter Temperature

A Rainboy

Ionization

Hongwan Liu

of Dark Sectors 24 Mar 2021

Calculating Deposition Efficiency with DarkHistory

HL, Gregory W. Ridgway and Tracy Slatyer arXiv:1904.09296

Hongwan Liu (NYU/Princeton)

McDonald Institute Astroparticle Seminar 26 Jan 2021

Deposition Efficiency Matter Temperature $\dot{T}_m = -2HT_m + \Gamma_C(T_{\rm CMB} - T_m) + \frac{f_{\rm heat}(z)}{3(1 + f_{\rm He} + x_e)n_{\rm H}} \left(\frac{dE}{dV dt}\right)_{\rm inj}$

Deposition efficiencies are nontrivial to calculate.

Ionization $\dot{x}_{e} = -\mathscr{C}\left[n_{H}x_{e}^{2}\alpha_{B} - 4(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right) + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{B}e^{-E_{21}/T_{B}}}\right) + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}} + \frac{(1-x_{e})\beta_{H}}\right) + \left(\frac{f_{\text{ion}}(z)}{\mathscr{R}n_{H}$

Hongwan Liu

• • •

Valdes+ 0911.1125 Galli+ 1306.0563 Slatyer 1506.03812

$$\frac{1 - \mathcal{C}(f_{\text{exc}}(z))}{0.75 \mathcal{R} n_{\text{H}}} \left[\left(\frac{dE}{dV \, dt} \right)_{\text{inj}} \right]$$

Deposition Efficiency Matter Temperature $\dot{T}_m = -2HT_m + \Gamma_C(T_{\text{CMB}} - T_m) + \frac{2f_{\text{heat}}(z, \mathbf{x}_e)}{3(1 + f_{\text{He}} + x_e)n_{\text{H}}} \left(\frac{dE}{dV dt}\right)_{\text{ini}}$

Strongly dependent on **ionization**: previous calculations assumed standard cosmic history.

Ionization $\dot{x}_{e} = -\mathscr{C}\left[n_{H}x_{e}^{2}\alpha_{B} - 4(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left[\frac{f_{\text{ion}}(z, \mathbf{x}_{e})}{\mathscr{R}n_{\text{TT}}} + \frac{f_{\text{ion}}(z, \mathbf{x}_{e})}{\mathscr{R}n_{\text{TT}}}\right]$

Hongwan Liu

$$\frac{(1 - \mathscr{C})f_{\text{exc}}(z, \mathbf{x}_{e})}{0.75\mathscr{R}n_{\text{H}}} \left[\left(\frac{dE}{dV dt}\right)_{\text{in}} \right]$$

Backreaction

Matter Temperature

 $\dot{T}_{m} = -2HT_{m} + \Gamma_{C}(T_{\text{CMB}} - T_{m}) + \frac{2f_{\text{heat}}(z, \mathbf{x}_{e})}{3(1 + f_{\text{He}} + x_{e})n_{\text{He}}} \left(\frac{dI}{dV}\right)$

Increased ionization leads to increased heating efficiency: accounting for backreaction important for accurate temperature histories.

Ionization $\dot{x}_{e} = -\mathscr{C}\left[n_{H}x_{e}^{2}\alpha_{B} - 4(1-x_{e})\beta_{B}e^{-E_{21}/T_{\text{CMB}}}\right] + \left[\frac{f_{\text{ion}}(z, \mathbf{x}_{e})}{\mathscr{R}n_{\text{L}}} + \frac{f_{\text{ion}}(z, \mathbf{x}_{e})}{\mathscr{R}n_{\text{L}}}\right]$

Hongwan Liu

$$\left(\frac{dE}{dt}\right)_{inj}$$

$$\frac{(1 - \mathscr{C})f_{\text{exc}}(z, \mathbf{x}_{e})}{0.75\mathscr{R}n_{\text{H}}} \left[\left(\frac{dE}{dV dt} \right)_{\text{in}} \right]$$

Backreaction

Important for accurate temperature calculations.

A Rainbow of Dark Sectors 24 Mar 2021

Reionization

Matter Temperature $\dot{T}_m = -2HT_m + \Gamma_C(T_{\text{CMB}} - T_m) + \frac{2f_{\text{heat}}(z, \mathbf{x}_e)}{3(1 + f_{\text{He}} + x_e)n_{\text{H}}} \left(\frac{dE}{dV dt}\right)_{\text{inj}} + \text{reionization terms}$

Photoionization rate, photoheating rate, free recombination cooling, bremsstrahlung cooling...

lonization

$$\dot{x}_e = -\mathscr{C}\left[n_H x_e^2 \alpha_B - 4(1 - x_e) \beta_B e^{-E_{21}/T_{\text{CMB}}}\right] + \left[\frac{f_{\text{ion}}(z, \mathbf{x}_e)}{\mathscr{R}n_{\text{H}}} + \frac{g_{n_{\text{H}}}}{\mathscr{R}n_{\text{H}}}\right]$$

Hongwan Liu

34

Reionization + Dark Matter

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

HL, Ridgway & Slatyer 1904.09296

STEPS

- 2. Electron Cooling
- 3. Photon Propagation and Deposition
- 4. Calculating $f_c(z, \mathbf{x})$
- 5. TLA Integration and Reionization
- 6. Next Step

Injected Photons

Injected Electrons DarkHistory is the state-of-the-art calculation of DM energy injection, and is especially important during the epoch of reionization.

RELEVANT MODULES

- 2. darkhistory.electrons
- 3. main
- 4. darkhistory.low_energ
- 5. darkhistory.history
- 6. main

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Temperature Probes

21-cm is potentially very **sensitive** to DM energy injection.

many other relevant results, including Lopez-Honorez, Vincent+ 1603.06795 ...

Hongwan Liu

HL & Slatyer 1803.09739

A Rainbow of Dark Sectors 24 Mar 2021

Temperature History $\dot{T}_m = -2HT_m + \Gamma_C(T_{\text{CMB}} - T_m) + \frac{2f_{\text{heat}}(z)}{3(1 + f_{\text{He}} + x_e)n_{\text{H}}} \left(\frac{dE}{dV dt}\right)_{\text{inj}} + \dot{T}_{\text{atom}} + \dot{T}^{\star}$ Photoheating Adiabatic cooling Compton heating DM heating Photoionization Event EPhotoheating $E - 13.6 \,\mathrm{eV}$

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Future Work

- 1. Computing spectral distortions from DM energy injection in full.
- 2. Improved calculation of energy injection: many spectral distortion effects neglected so far.
- 3. Energy injection in haloes: how to particles escape the halo into the IGM? Schön+ 1706.04327

A Rainbow of Dark Sectors 24 Mar 2021

Statistical Test

Specifically, our test statistic only penalizes DM models that overheat the IGM relative to the data, which accounts for the fact that any non-trivial photoheating model would only result in less agreement with the data, whereas DM models that underheat the IGM could be brought into agreement with the data given a specific photoheating model. We define the following test statistic for the *i*th IGM temperature bin:

$$\mathrm{TS}_{i} = \begin{cases} 0, & T_{i,\mathrm{pred}} < T_{i,\mathrm{data}}, \\ \left(\frac{T_{i,\mathrm{pred}} - T_{i,\mathrm{data}}}{\sigma_{i,\mathrm{data}}}\right)^{2}, & T_{i,\mathrm{pred}} \ge T_{i,\mathrm{data}}, \end{cases}$$
(5)

where $T_{i,\text{data}}$ is the fiducial IGM temperature measurement, $T_{i,\text{pred}}$ is the predicted IGM temperature given a DM model and photoheating prescription, and $\sigma_{i,\text{data}}$ is the 1σ upper error bar from the fiducial IGM temperature data. We then construct a global test statistic for all of the bins, simply given by $TS = \sum_i TS_i$. Assuming the data points $\{T_{i,data}\}$ are each independent, Gaussian random variables with standard deviation given by $\sigma_{i,\text{data}}$, the probability density function of TS given some model $\{T_{i,\text{pred}}\}$ is given by

$$f(\mathrm{TS}|\{T_{i,\mathrm{pred}}\}) = \frac{1}{2^N} \sum_{n=0}^N \frac{N!}{n!(N-n)!} f_{\chi^2}(\mathrm{TS};n) \,. \quad (6)$$

Hongwan Liu

N is the total number of temperature bins and $f_{\chi^2}(x;n)$ is the χ^2 -distribution with argument x and number of degrees-of-freedom n, where the n = 0 case is defined to

A Rainbow of Dark Sectors 24 Mar 2021

Photons

Hongwan Liu

42

Nuons and Pions

Hongwan Liu

43

p-wave Boost Factor

A Rainbow of Dark Sectors 24 Mar 2021

Hongwan Liu

DarkHistory Code

Hongwan Liu

A Rainbow of Dark Sectors 24 Mar 2021

Change in Temperature due to Backreaction

A Rainbow of Dark Sectors 24 Mar 2021

Hongwan Liu

Histories

Conservative: $\dot{T}^{\star} = 0$

Photoheating I: $0 \,\mathrm{K} < \Delta T < 3 \times 10^4 \,\mathrm{K}$ $-0.5 < \alpha_{\rm bk} < 1.5$

A Rainboy

Photoheating II: $2 \times 10^4 \,\mathrm{K} < \Delta T < 3 \times 10^4 \,\mathrm{K}$ $-0.5 < \alpha_{\rm bk} < 1.5$

Future Work

- 1. Computing spectral distortions from DM energy injection in full.
- 2. Improved calculation of energy injection: many spectral distortion effects neglected so far.
- 3. Energy injection in haloes: how to particles escape the halo into the IGM? Schön+ 1706.04327

48