Dark Matter-electron scattering in the *Gaia* era

Manuel A. Buen-Abad

with Jatan Buch, JiJi Fan, & Shing Chau Leung

2007.13750, github.com/ManuelBuenAbad/dame_dd

03/24/2021

Gaia and substructure

- Discoveries of stellar substructures (from mergers)
 - Debris flow (Gaia/Enceladus Sausage)
 - Streams (S1, S2a, S2b, Nyx)
- Since both stars & DM merge:

stellar substructure ⇒ **DM substructure**

 Some local DM could be in substructures
 Need to move Beyond Standard Halo Model (BSHM)

Necib, *et al.* <u>1807.02519</u>; O'Hare *et al.* <u>1909.04684</u>.

DM distribution: BSHM

Why is it important? Direct Detection!

Goodman, Witten, '84

Why is it important? Direct Detection!

This talk: DM-e DD with semiconductors

$\frac{dR}{dE} \propto \frac{\rho_{\chi}}{m_{\chi}} \int dq \ \sigma_e(q) |f_{\rm sc}(q,E)|^2 g(v_{\rm min}(q,E))$

Manuel A. Buen-Abad

Manuel A. Buen-Abad

Manuel A. Buen-Abad

Challenges

- DM substructures are very different from SHM and among themselves:
 - Variety in *v_{mp}* and *phases*
 - $\circ \Rightarrow$ cannot use the same assumptions as in pure SHM: one size does not fit all!

Challenges Opportunities!

- DM substructures are very different from SHM and among themselves:
 - Variety in v_{mp} and phases (exploit this!)
 - $\circ \Rightarrow$ cannot use the same assumptions as in pure SHM: one size does not fit all!
- Key: distribution v_{mp} & **phase** features \Rightarrow **spectra E** & **t** features

Challenges Opportunities!

- DM substructures are very different from SHM and among themselves:
 - Variety in v_{mp} and phases (exploit this!)
 - $\circ \Rightarrow$ cannot use the same assumptions as in pure SHM: one size does not fit all!
- Key: distribution v_{mp} & **phase** features \Rightarrow **spectra E** & **t** features
- Our paper: *E-t* binning, simple likelihood ratio analysis
 - Phys. Rev. D 102 (2020) 8, 083010; <u>arXiv:2007.13750</u>
 - For code visit <u>github.com/ManuelBuenAbad/dame_dd</u>
 - Semiconductor form factors from <u>QEdark</u>

DD→Astro: Disentangling Substructure

Manuel A. Buen-Abad

 $\eta_{\rm S1}$

Conclusions

- Dawn of golden age of astrometry and Dark Matter Direct Detection
 - Gaia \Rightarrow Beyond Standard Halo Model (Sausage, streams...)
 - New technology \Rightarrow New Direct Detection experiments
- Astrophysics↔Direct Detection
- Double call for
 - Astrophysicists: better measure substructure properties; DM↔stars correlation
 - Particle Physicists: **new methods** to better exploit features of differential rates in *E-t*
- ¡Gracias!

Backup slides

Annual modulation

different phases for different distributions

E-t binning

where $E_{\rm gap}$ is the band-gap energy of the semiconductor and ε the mean energy per electron-hole pair. $E_{\rm gap} =$ 1.2 eV and $\varepsilon = 3.8$ eV for silicon, while $E_{\rm gap} = 0.67$ eV and $\varepsilon = 2.9$ eV for germanium.

Manuel A. Buen-Abad

More Results: 5σ Discovery Reach (SHM)

Manuel A. Buen-Abad

More Results: 50 Modulation Discovery Reach

Manuel A. Buen-Abad

More Results: Substructure Degeneracy

More Results: Substructure Degeneracy

More Results: Mass vs. Substructure Fraction

More Results: 5 o Discovery Reach

1. Gaia and substructures

Gaia in numbers

- ESA satellite launched 2013
 - @ L2: 1.5 million km from Earth; anti-Sun
 - Successor to *Hipparcos* (1989-1993)
 - End: 12/31/2022
- Astrometry + photometry + spectrometry
- DR2: positions, parallaxes (24 μas), and proper motions of 1.3 billion stars: 1% of Milky Way stars
- 1 PB completed dataset

Manuel A. Buen-Abad

https://sci.esa.int/web/gaia

Discoveries with Gaia

- *Gaia*: Milky Way (MW) stellar substructure from history of mergers:
 - Debris flow:
 - Gaia Enceladus/Sausage
 - Streams
 - Nyx
 - S1, S2a, S2b
- Expected: stars *and* DM are swallowed in mergers
- Old: stellar rotation curves \Rightarrow Dark Matter (DM) in a Halo
 - Standard Halo Model (SHM): *v*=220 km/s
- *New*: need to move Beyond SHM (BSHM)

BSHM: Gaia Enceladus/Sausage

- Debris flow: spatially mixed, warm kinematic stellar substructure
- Formed from merger of dwarf galaxy, with mass
 M~10⁷⁻⁸ M_{sun}
- DM distribution from stars?
 - *FIRE-2* simulations: accreted low metallicity (read: older) stars **correlate** with DM

[Belokurov, et al. 1802.03414; Necib, et al. arXiv:1807.02519; Necib, et al. arXiv:1810.12301]

BSHM: Streams

- Spatially localized, cold kinematic stellar substructures
- Formed by recent mergers (dwarf spheroidals)
- A few:
 - **Nyx** [Necib, et al. arXiv:1907.07190]
 - S1, S2a, S2b [Myeong, et al. 1804.07050; O'Hare, et al. arXiv:1909.04684]
- DM distribution from stars?
 - FIRE-2 simulations: no perfect stars-DM correlation; *but* mergers of dwarf spheroidals are better [Necib, et al. arXiv:1810.12301; O'Hare, et al. arXiv:1909.04684]

2. Dark Matter Direct Detection

Bounds: DM-N DD

Bounds: DM-e DD

DD Parameter space

DM-N 90% C.L. bounds

 m_{χ} [GeV]

semiconductor

DM probes semiconductor by depositing energy *E* and transferring momentum *q*

Spectrum

$$\frac{dR}{dE} = N_T \frac{\rho_{\chi}}{m_{\chi}} \overline{\sigma}_e \alpha \frac{m_e^2}{\mu_{\chi e}^2} \int dq \ \frac{F_{DM}(q)^2}{q^2} |f_{sc}(q, E)|^2 g(v_{min}(q, E))$$

Differential rate: spectrum

Gaia recap

Gaia: astrophysics input is complicated.

BSHM: *some* of local DM density could come from:

- Enceladus/Sausage
- Streams
 - Nyx 0
 - **S1** 0
 - Ο ...

$$g(v_{\min}) = \int_{V_{\min}}^{V_{esc}} \mathrm{d}v \stackrel{(F(v))}{\underset{V_{\min}}{\leftarrow}}$$

.....

3. DM-e DD after Gaia

Assumption: DM distr. = stellar distr.

Kinematics

Manuel A. Buen-Abad

Kinematics

Manuel A. Buen-Abad

Kinematics

Manuel A. Buen-Abad

Spectra

Drukier, Freese, Spergel '86 Freese, Lisanti, Savage '12

$$g(0) = \left< rac{1}{v} \right> \sim rac{1}{\left< v \right>} \sim rac{1}{v_{ ext{mp}}}$$

different **phases** at different **velocities** for different **distributions**

Annual modulation: spectra

different **phases** at different **energies** for different **distributions**

Annual modulation: spectra

Si, $\overline{\sigma}_e = 10^{-40} \text{ cm}^2$, $m_{\chi} = 10 \text{ MeV}$ contact interaction

different **phases** at different **energies** for different **distributions**

Manuel A. Buen-Abad