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In the presence of magnetic fields, gravitational waves are converted into photons and vice versa. We
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• Predicted by Poincaré (1905) 
• Einstein provided a firm theoretical background for them (1916) 

□ h
μν

= − 16πGT
μν

Gravitational Waves
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Gravitational Wave Spectrum

Credit: NASA Goddard Space Flight Center
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Gravitational Wave Spectrum
LIGO - VIRGO, 2014
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Gravitational Wave Spectrum
LIGO - VIRGO, 2014

Cosmological constraints 
on radiation energy Neff
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Gravitational Waves 

and the Gertsenhstein Effect



Camilo A. Garcia Cely 

Revisiting Gertsenhstein’s ideas
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The Gertsenhstein Effect
• The conversion of gravitational waves into 

electromagnetic waves is a classical process. 
Its rate does not involve  

• The process is strictly analogous to axion-
photon conversion. 

• Involving gravity the conversion probabilities 
are extremely small. It may be compensated by 
a ‘detector’ of cosmological size. 

• Distortions of the CMB

ℏ
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Cosmic magnetic fields and 

multi-messenger astronomy
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CMB
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Synergy with TeV  ray observatoriesγ
 Kronberg , 2016 
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CTA consortium 2017 

Dermer et al
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CMB observations  

and 21-cm cosmology



Camilo A. Garcia Cely 

CMB distortions 
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THE COSMIC MICROWAVE BACKGROUND SPECTRUM FROM THE FULL COBE1

FIRAS DATA SET
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ABSTRACT

We have reÐned the analysis of the data from the FIRAS (Far-InfraRed Absolute Spectrophotometer)
on board the COBE (COsmic Background Explorer). The FIRAS measures the di†erence between the
cosmic microwave background and a precise blackbody spectrum. We Ðnd new, tighter upper limits on
general deviations from a blackbody spectrum. The rms deviations are less than 50 parts per million of
the peak of the cosmic microwave background radiation. For the Comptonization and chemical poten-
tial, we Ðnd o y o \ 15 ] 10~6 and o k o \ 9 ] 10~5 (95% conÐdence level [CL]). There are also reÐne-
ments in the absolute temperature, 2.728 ^ 0.004 K (95% CL), the dipole direction, (l, b) \ (264¡.14
^ 0.30, (95% CL), and the amplitude, 3.372 ^ 0.014 mK (95% CL). All of these results48¡.26 ^ 0.30)
agree with our previous publications.

Subject headings : cosmic microwave background È cosmology : observations

Competes with the 
cosmological constraints 
on radiation energy Neff



Camilo A. Garcia Cely 

Rayleigh-Jeans Tail
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• Largely unexplored with upcoming 
advances in radio astronomy probing 
it in the near future.

ARCADE 2
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FIRAS

• Largely unexplored with upcoming 
advances in radio astronomy probing 
it in the near future.

ARCADE 2

• Puzzling signal by EDGES.   
(Experiment to Detect the Global 
Epoch of Reionization Signature)
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Expectations for a 21 cm signal

Valdes et al 2013
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Figure 1 | Summary of detection. a, Measured spectrum for the reference 
dataset after filtering for data quality and radio-frequency interference. 
The spectrum is dominated by Galactic synchrotron emission.  
b, c, Residuals after fitting and removing only the foreground  
model (b) or the foreground and 21-cm models (c). d, Recovered  
model profile of the 21-cm absorption, with a signal-to-noise  
ratio of 37, amplitude of 0.53 K, centre frequency of 78.1 MHz and  
width of 18.7 MHz. e, Sum of the 21-cm model (d) and its residuals (c).
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The absorption feature was 

found to be roughly twice as 

strong as previously expected. 

C o n s e r v a t i v e l y, we m ay 

assume that the dev iat ion 

from the expected value is due 

to foreground contamination, 

and place a bound on any 

stochastic GW background by 

using δfγ/fγ ≲ 1 at  78 MHz
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Upper bounds on stochastic gravitational waves
PHYSICAL REVIEW LETTERS 126, 021104 (2021)
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Conclusions
• The Gertsenshtein effect during the dark ages provides a powerful way to probe 

gravitational waves in the MHz-GHz range from distortions of the Rayleigh-

Jeans CMB tail. 

• With upcoming advances in 21cm astronomy targeting precisely this frequency 

range with increasing accuracy, it becomes conceivable to push the limits 

derived from radio telescopes below the cosmological bound constraining the 

total energy in gravitational waves. 

• This highlights the interesting prospects associated with multi-messenger 

astronomy.


