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DARK MATTER : HOW DID IT GET HERE?
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The most popular paradigm: Thermal Freezeout

If significant interactions establish equilibrium with the thermal bath, dark
matter traces a thermal abundance, getting Boltzmann suppressed and
freezing out when the interactions become slower than the Hubble rate



THERMAL FREEZEQUT: A CLOSER LOOK

If dark matter primarily annihilates into species X in the bath % 9 <> XX
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Particle X in the bath follows Boltzmann distribution

Probability

Only the part of X distribution with £ > m

can participate in the production of dark matter v

As T decreases, a smaller and smaller fraction of X
it wewiivie . distribution has enough energy to produce dark
= matter, hence the dark matter equilibrium

abundance gets the familiar exponential
(Boltzmann) suppression
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THERMAL FREEZEQUT: A CLOSER LOOK

If dark matter primarily annihilates into species X in the bath ¥ ¢ < XX
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THIS TALK:
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Dark matter abundance undergoes the usual
suppression, but bounces up at late times and
freezes out with an enhanced relic abundance!
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A MODIFIED DARK MATTER SETUP

(Unspoken) assumptions in dark matter thermal freezeout frameworks:
Dark matter carries an effective Z 2 symmetry

Dark matter producing processes require thermal support

Entirely plausible, but not necessary!!!




A MODIFIED DARK MATTER SETUP

Consider a hidden sector where the aforementioned statements do not hold:
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A dark sector with three particles:

| H (heavy; dark matter)
M (medium)
L (light)
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A MODIFIED DARK MATTER SETUP

Consider a hidden sector where the aforementioned statements do not hold:
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A dark sector with three particles:
| H (heavy; dark matter)
M (medium)

L (light)

All four particle interactions allowed, e.g.

HH<sLL, HHMM, HM<=ML, HM<sLL, MM<sHL ...
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A MODIFIED DARK MATTER SETUP

Consider a hidden sector where the aforementioned statements do not hold:
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A dark sector with three particles:
H (heavy; dark matter)
M (medium)
L (light)

All four particle interactions allowed, e.g.
HH<-LL, HH<>MM, HM<-ML, HM<sLL, MM<-HL ...

Key assumption: 2mys > myg + myp,
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COSMOLOGICAL RISTORY
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- Hidden sector out of (chemical) equilibrium from the SM thermal bath
- Comoving number density in the hidden sector (H+M+L) conserved

o Interactions between hidden sector species rapid
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COSMOLOGICAL RISTORY
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 Rapid hidden sector interactions interconverting H<=M<sL
to familiar Boltzmann suppression of heavier particles
relative to the lighter ones
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COSMOLOGICAL RISTORY

10—4 i
1070 |

-8
19 BB

S X~6O
10-10 I
= _ Most processes that destroy
= H(M) in favor of L go out of
10 e equilibrium
500 1000
HHQMM i HHeLL HLeLL . | HM(—)ML
E T 0.001- . .004 0:010

orange(blue): forward (reverse) process
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COSMOLOGICAL RISTORY
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Boltzmann suppression logic reversed:

MM ->HL can proceed at zero temperature; the reverse needs
thermal support, so the former is more “favored”!
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COSMOLOGICAL RISTORY
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+ Net collision term for Boltzmann eq for H:
transitions from overall H number
\_/; reducing to H number increasing!
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COSMOLOGICAL HISTORY
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Final relic abundance of dark matter
bounces up and can be larger by several
orders of magnitude!

eraction:
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A COMPARISON
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CONTEXT

+ Needs: a dark sector with multiple particles, with a process that involves heavier
particles annihilating into final states that contains the particle of interest

 Can occur in realistic setups: e.g. a dark (“twin”) QCD sector with multiple dark
mesons

041 Mg,y = 200,210,213 MeV
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L = mvro/ r “Split SIMPs with Decays”
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Andrey Katz, Ennio Salvioni, Bibhushan Shakya
arXiv: 2006.15148 [hep-ph]
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PARTICLE DECAYS

)4_ Too much L; needs to decay,

L otherwise will overclose

Q M might be OK; could be
1 effectively stable and a
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H will also be unstable and
can decay if L (and M) can
decay

L/M
SM final

states
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PARTICLE DECAYS
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If L (M) decay with effective coupling
L—Cg SM final ~g, ensuring that L decays away
before BBN requires roughly g>10-13
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| H decays with an effective coupling g2, plus |
| additional phase space suppression factors
!
L/M lifetime: ~1027 s
H SM final
states | ong enough to be dark matter, short
enough to see indirect detection signals!

—_— ——e——— = == = = s —— — = N —

20



PARTICLE DECAYS
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If L (M) decay with effective coupling
L—CE SM final ~g, ensuring that L decays away
before BBN requires roughly g>10-13
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| H decays with an effective coupling g2, plus |
| additional phase space suppression factors

L/M lifetime: ~1027 s
H SM final
states | ong enough to be dark matter, short
enough to see indirect detection signals!
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Indirect detection signals from dark matter annihilation: HH->MM,LL

Rates larger than “naively” expected from standard hidden sector freezeout |
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SUMMARY
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In some scenarios, it is possible for the dark matter freezeout abundance to
undergo a “bounce” in the late stages of thermal freezeout, increasing by
several orders of magnitude compared to standard freezeout

Requires multiple species interacting with dark matter, and the presence of an
annihilation channel into dark matter that does not require thermal support
to control the final stage of freezeout

Present day dark matter annihilation cross section larger than naively
expected from standard freezeout processes

Dark matter is necessarily unstable, with decay lifetime of interest for signals
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