

Report on jet reconstruction at Muon Collider

Lorenzo Sestini (INFN Padova) with contributions from Padova, Bari and TRIUMF groups

Muon Collider simulation meeting, 16-3-2021

- Jet reconstruction with calorimeter
- Missing energy
- Jet reconstruction with particle flow
- Jet tagging and identification
- Next steps

Where we were before ILCSoft

2020 JINST 15 P05001

Full characterization of the b-jet performance in the presence of the beam-induced background (BIB)

Not optimized, but we demonstrated that Physics is doable

Design a detector at $\sqrt{s} = 1.5$ TeV

BIB subtraction in calorimeter

- An aggressive acquisition time window is set: ±0.25 ns.
- E and σ are calculated in bins of θ (angle with respect to the beam axis) and R (distance from the beam axis) from the BIB distribution.

- A hit is accepted if $E > \overline{E} + 2\sigma$.
- The energy of the accepted hit is corrected: $E \rightarrow E - E$.
- The PandoraPF algorithm is used for clustering.

Jet reconstruction with calorimeter

- Jets are clustered starting from calorimeter clusters with the kt algorithm (R=0.7).
- Tests have been performed with HH(\rightarrow bbbb) events.

- More than half of the energy is lost with subtraction.
- After applying a Jet Energy Correction, p_T resolution is 30% (compatible with IlcRoot).

Missing energy

- The calorimeter-jet configuration has been considered for studies on the missing energy measurement.
- $\Delta H^{\text{miss}} = H^{\text{miss}}_{\text{BIB}} H^{\text{miss}}_{\text{noBIB}} \rightarrow \text{calculated in the transverse and longitudinal plane.}$
- Preliminary studies show that the measurement in the transverse plane is more procise.

Track selection for Particle Flow inputs

- We have to deal with the tracking combinatorial.
- Cuts on the number of hits and χ^2 /ndof of the tracks could be applied to remove most of it.

Full jet reconstruction (tracks + clusters)

- Full particle flow algorithm (PandoraPF) with tracks and calorimeter clusters (with BIB subtraction). Jet clustering with kt and R=0.7.
- Tested with few events: 20 HH(\rightarrow bbbb) events, not enough to assess the performance.

• About 1/3 of the energy is lost (to be compared with ½ of energy lost in calorimeter only reco)

Full jet reconstruction

- Ratio of the number of jets reconstructed with and without BIB $\rightarrow N^{BIB}/N^{noBIB}$
- The statistics is still low, but it may be possible to recover low p_T jets with the full reco.

Jet identification

- Secondary vertex algorithm from LCFIPlus processor.
- At least for now it is tested without the BIB (we are still working on dedicated simulations).
- Further studies on light mis-tag rate are also necessary.

Jet identification

- On-going studies on b vs c discrimination: MVA technique with SV-related observables in input.
- Further studies will be performed on b/c vs light jets discrimination.

- The goal is to obtain the complete characterization of the jet performance in the presence of the BIB: jet efficiency and fake rate, jet energy resolution, tagging efficiency and mistag.
- → As you have seen the machinery is already in place.
- → We have already generated inclusive b, c and light dijet samples with Pythia 8 in six $p_T(b/c/light)+p_T(b/c/light)$ bins: [0,40], [40,80], [80,120], [120,160], [160,200], [200,∞] GeV.
- → Simulations are on-going.
- The bottleneck will be the tracking: we need a proper tracking configuration!
- For sure we can do more sophisticated things than these, but consider that this work is the secondary activity of a very limited number of people.

Backup

Background in calorimeter

Part of the background is **asynchronous** with respect to the signal

Background in calorimeter

Calorimeter Occupancy

Low occupancy in HCAL

ECAL barrel longitudinal coordinate

Longitudinal calorimeter segmentation can be exploited to reconstruct showers and reject the BIB

- Test the calorimeter digits selection used in past studies (ILCroot with Dual Readout calorimeter) in the current framework (ILCsoft) and with the CLIC calorimeter.
- If decent results are obtained, the algorithm can be optimized for better performance
- The algorithm goes as follow:
 - the calorimeter is divided into several regions;
 - in each region the digits released by the BIB are considered, the mean (<E>) and the standard deviation (σ) are calculated;
 - → for signal+BIB reconstruction, if the digit energy $E > \overline{E} + 2\sigma$, then it is selected;
 - → the energy of the selected digit is corrected: $E^{cor} = E \overline{E}$

Digit energy

- Average digit energy for BIB is 11 MeV.
- Average digit energy for $H \rightarrow bb$ is 15 MeV (withouth BIB).
- The overlay of H → bb+BIB produce an average digit energy between 20 and 30 GeV for digits that contains both signal and BIB.
- Calculated thresholds are in the range between 10 and 40 MeV depending on R and θ .

SV-tagging parameters

Parameters	PV	SV
Min D ₀ [mm]	0.	0.
Max D ₀ [mm]	0.2	5.
Max Z ₀ [mm]	0.5	5.
TrackMinVdxFtdHits	2	4
Min P _T [GeV]	Default (0)	0.8