HARDWARE FOR MACHINE LEARNING & MACHINE LEARNING AS A SERVICE

Miguel Ángel Martínez del Amor

Department of Computer Science and Artificial Intelligence Universidad de Sevilla <u>https://www.cs.us.es/~mdelamor</u> <u>mdelamor@us.es</u> @miguelamda

I Workshop de Computing y Software de la Red Española de LHC

Outline

- Machine Learning: brief fundamentals
- Hardware for Machine Learning: CPU/GPU/FPGA/ASIC
- Accelerated frameworks for Machine Learning
- Machine Learning as a Service (MLAAS)

04/2021

HW4ML & MLAAS

MACHINE LEARNING

Brief fundamentals

• Learn by exampe:

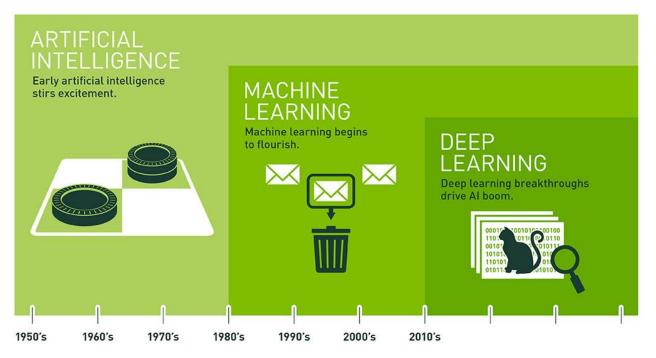
New Data

Predictive Model

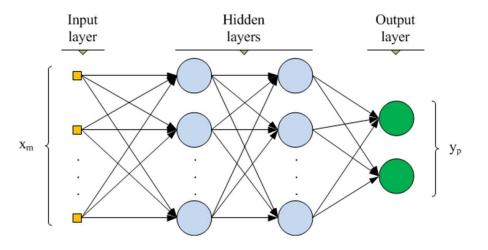
Predictions



Machine learning evolution



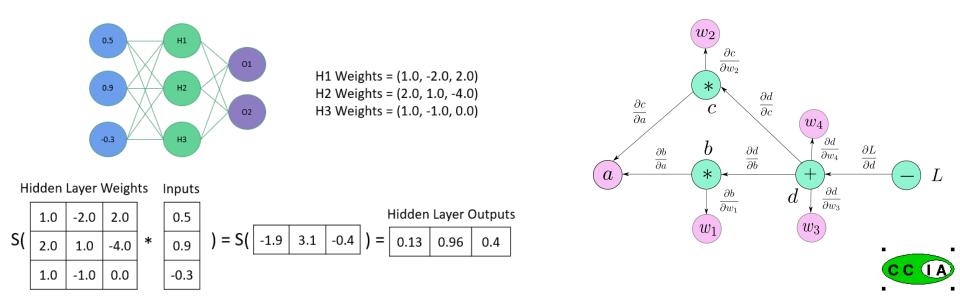
- Deep Learning
 - Mainly based on (deep) multilayer neural networks (DNN)



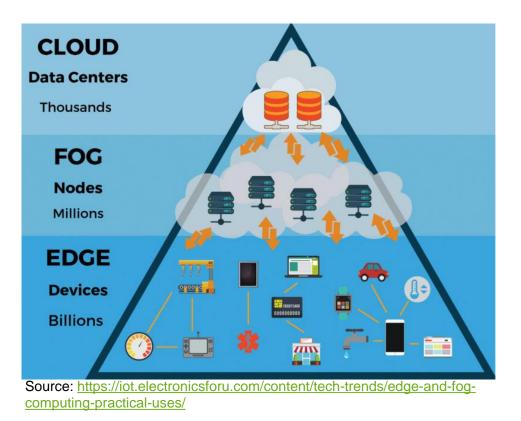
7

Machine Learning

- Deep Learning
 - DNN can be interpreted as matrices and computational graphs



• Where?



04/2021

HW4ML & MLAAS

HARDWARE FOR MACHINE LEARNING

How to make it real

Hardware

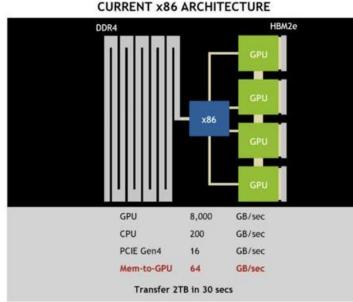
- Requirements (from ML perspective):
 - Reduced-precision computations
 - 8-bit integers are enough for inference.
 - Small set of operations: some linear algebra operations such as matrix/vector multiplication, convolution, etc.
 - Dense vs **sparse** operations
 - No need for branch prediction, deep cache memories, etc.
 - High **memory** bandwidth, low latency and large storage

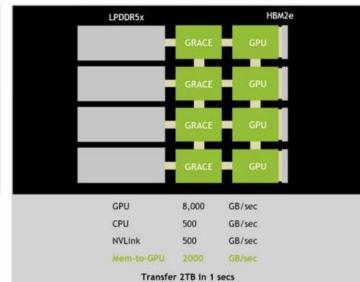
- Usually used for inference
- x86 family (Intel, AMD)

- Similar features: Intel Xeon (~56 cores) vs AMD EPYC (~64 cores)
- Memory bus: PCI-express (PCIe v4, x16, ~16GB/s)
- Intel's SIMD extensions for ML (fused mult-add vector operations):
 - AVX512, AVX512 VNNI (for CNN), DL Boost AVX512-VNNI + bfloat16
- **IBM**: currently with POWER9 arch.
 - 96 threads with 12 or 24 cores.
 - PCIe v4 vs NVLink 2.0 CPU-to-GPU (~ 500GB/s)
- ARM: currently v8 with Cortex-A (48 cores) and Neoverse (128 cores)
 - Low energy consumption with lightweight cores
 - Mobile, server, laptops, single boards (Raspberry Pi, Jetson, Google Coral Dev Board)

POWER9

- ARM is about to be acquired by NVIDIA
- NVIDIA Grace announced at GTC2021

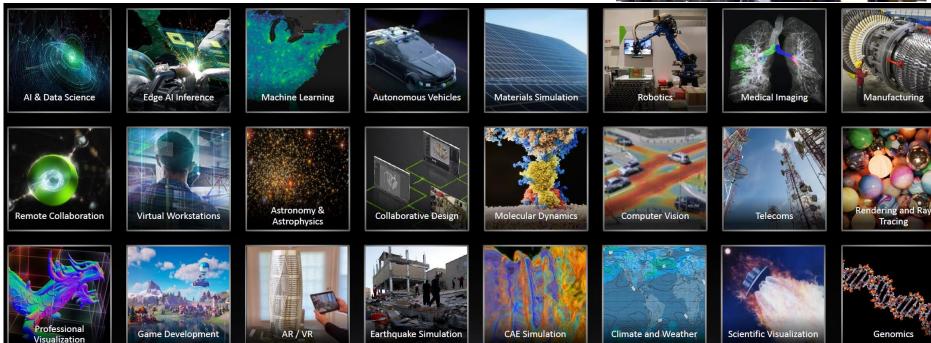




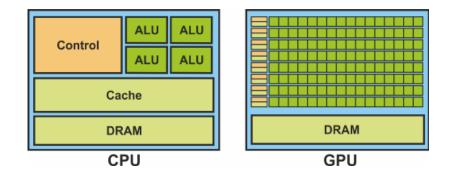
INTEGRATED CPU-GPU ARCHITECTURE

Key device in Deep Learning

And in many other applications



- **GPU computing**: general purpose computations on GPUs
- Good on data parallelism (e.g. matrix operations)
- Main vendors: NVIDIA, AMD, Intel, ARM

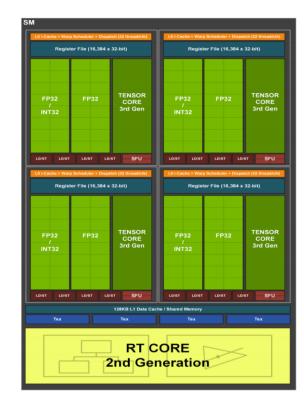


• NVIDIA:

- Proprietary of CUDA
- GPUs:
 - GTX/RTX (GeForce, videogames)
 - RTX Axxxx (Quadro, rendering)
 - Axxx (Tesla, supercomputing)
 - Jetson (for robotics)
 - DGX (workstation)

• NVIDIA:

- Architectures (since 2007):
 - Tesla, Fermi, Kepler, Pascal, Maxwell, Volta, Turing, Ampere
- Ampere:
 - RTX3xxx, Axxxx (A6000, A40...)
 - GPU Mig (multi-instance / partitions of one GPU)
 - Example, RTX3080:
 - 8704 cores, 10GB, 272 Tensor cores, 68 RT cores



• NVIDIA:

- CUDA cores:
 - SP distributed in SMs
 - FP64, FP32, FP16/Mixed precision, INT32, INT16, INT8

Memories:

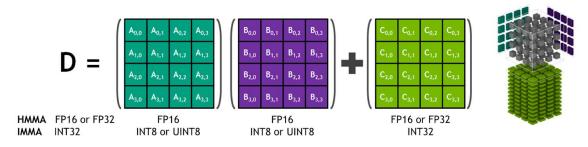
- Global (device)
- Texture
- L2 cache
- Shared
- L1 cache
- Registers



• NVIDIA:

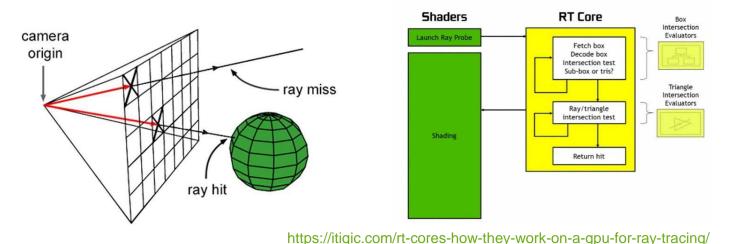
Tensor cores:

- Since Volta
- For tensor operations (fused mult-add matrix operation), for CNN
- Support of Half Precision (float16, int8).
- Currently optimized for sparse operations

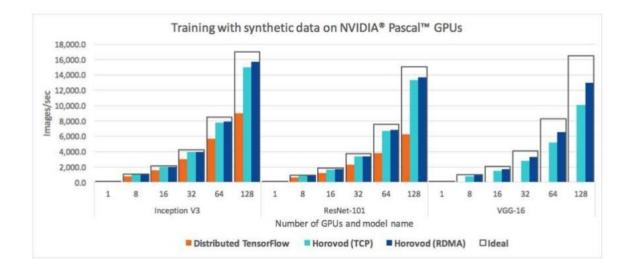


• NVIDIA:

- RT cores:
 - Since Turing (reason for $GTX \rightarrow RTX$)
 - For real time Ray Tracing (track objects hit by a ray)



- NVIDIA:
 - Distributed training is possible, but scaling is sublinear



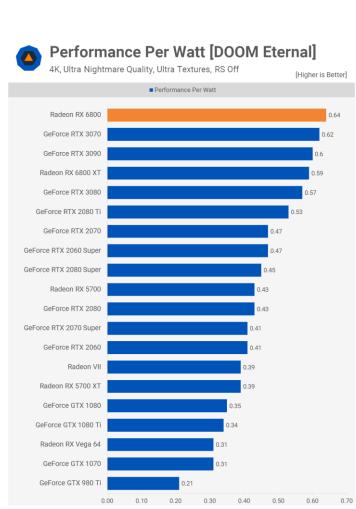
• AMD:

- Main competitor of NVIDIA in GPUs. Main market: game consoles
- Creator of <u>ROCm</u> project:
 - Open source, following the lead of CUDA
 - HIP: CUDA → ROCm translation
- Infinity Fabric (like NVLink)

• AMD:

Architectures:

- Graphics Core Next (GCN)
- Radeon DNA (RDNA)
 - Changes in how the code is scheduled
- Radeon RX 6000 (Big navy, RDNA2)
 - Include RA (ray accelerator)
 - ML done with shader units using packed data formats (32-bit vectors)
 - Example, RX6900XT:
 - 80 CUs (5120 cores), 16GB, 80 RAs

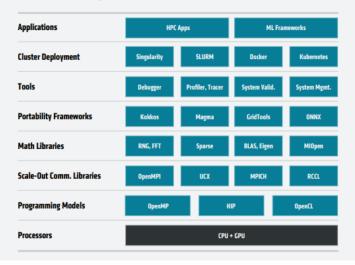


• AMD:

- Experimental support of ML frameworks
- Miopen: library for ML primitives
- ROCm is supported by SYCL LLVM and TVMlang.

2020: AMD ROCm[™] 4.0

Complete Exascale Solution for ML/HPC

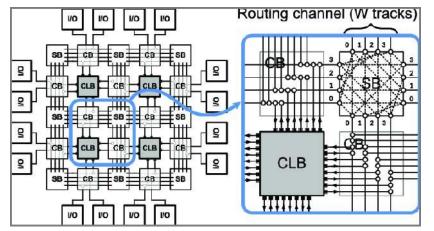


Intel:

- Mainly pushing SYCL
- So far, small integrated GPUs: HD Graphics
- Coming in 2021 (?): Intel Xe HPG
 - GPU computing with CPU+GPU
 - ~Expected RX6800 RTX3070

Hardware (FPGA)

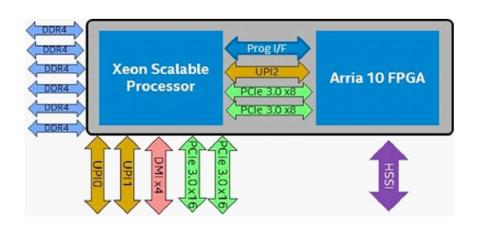
- FPGA: field-programmable gate array
- GPUs are energy-inefficient, FPGAs can be energyefficient alternative
- Usually used for inference
- OpenCL can be used for development
- Opportunities on the cloud
- Very steep learning curve



27

Hardware (FPGA)

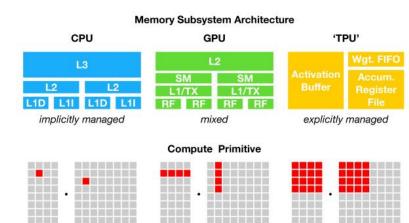
- Main manufacturers: Intel (Altera) and Xilinx
 - Intel Stratix 10GX: 10.2 million logic cells
 - Xilinx Virtex UltraScale+: 9 million logic cells
- Intel has hybrid <u>Xeon+FPGA chips</u>
- AMD interested on acquiring Xilinx



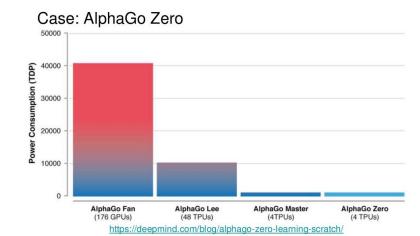
scalar

tensor

- ASIC: application-specific integrated circuit
- Specialized chips for ANN by matrix (tensor) operations
- Very low energy consumption
- Cannot be re-programmed like FPGAs
- Separate ASICs for inference and training
- Plethora of <u>options</u>: Google, Habana, AWS, Alibaba, Huawei...
 - TPU, NNP, NPU, IPU, VPU, G(raph)PU

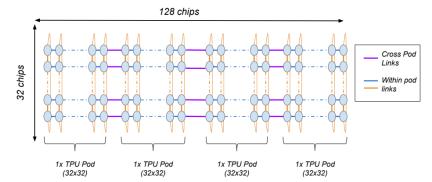


vector



Hardware (ASIC)

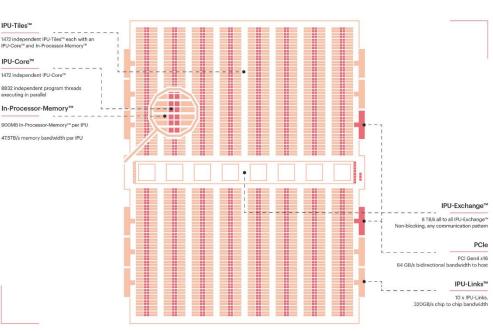
- Google's TPU:
 - Training and inference
 - Today, only available on the cloud:
 - TPUv2: 180 TFLOPS (bfloat16), 64GB HBM, 4.5\$/h
 - TPUv3: 420 TFLOPS (bfloat16), 128GB HBM, 8\$/h
 - TPUv4 (dec 2020): 2xTFLOPS versus TPUv3
 - They can work together in a network (distributed ML): POD



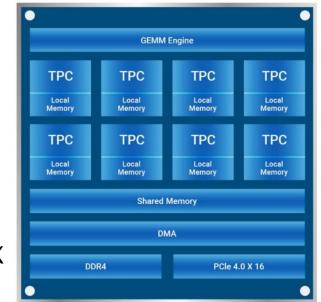
Hardware (ASIC)

Graphcore's IPU:

- Training and Inference.
- GC2 (Colossus MK1 GC2 IPU):
 - 7296 threads running on 1216 IPU tiles
 - 31.1 TFLOPS FP32, 124.5 TFLOPS mixed precision
- GC200 (Colossus MK2 GC200 IPU):
 - 8832 threads running on 1472 IPU tiles
 - 250 TFLOPS at FP16
- Poplar SDK: integration with TF2/pyTorch
- Ready for Bulk Synchronous Parallelism
 - · Graph based computation with high-dimensional variables
 - All tiles run code independently with their own local memory. They must synchronise to exchange data.
- Price:
 - IPU-M2000 (GC200, 3.6GB on chip, 448GB outside, 32,450\$ (can be used to construct a POD, up to 64,000 working as one)



- Intel's Habana:
 - · Gaudi: training chip
 - PCIe v4 x16, 32GB HBM2, FP32, BF16, INT32-16-8
 - Goya: inference chip
 - PCIe v4 x16, 4/8/16GB DDR4, FP32, BF16, INT32-16-8
 - SynapseAI compiler, supporting TF 2.2 and ONNX



Hardware (ASIC)

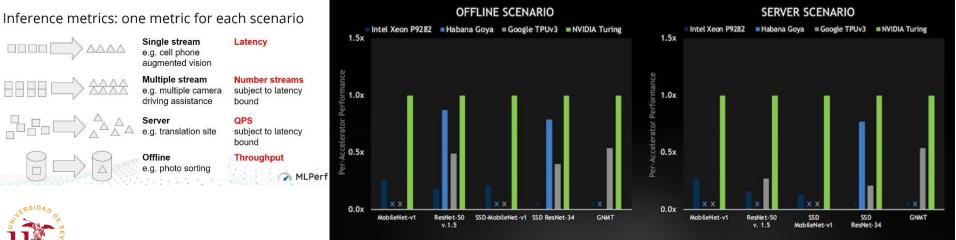
- Others:
 - Cerebras: WSE with 400,000 cores and 18 GB.
 - AWS
 - Inferential: 64 TFLOPS with FP16, 128TOPs INT8.
 - Trainium: available in 2021 (support for TF, PT, MXNet)
 - Huawei:
 - Ascend 310: 22TOPS INT8, 11 TFLOPS FP16, 8W power. In Atlas 300I inference
 - Ascend 910: 640 TOPS INT8, 320TFLOPS FP16 (close to A100). In Atlas 300T Training card
 - Alibaba Hanguang 800 (Al-inference chip)
 - Baidu Kunlun, Groq TSP, Bitmain Sophon, Qualcomm Coud, Wave Computing (DPU), ARM ML inference NPU, SambaNova RDA, Mythic...

33

X = No result submitted

Hardware (comparison)

- How to compare? have a look to MLPerf:
 - SoTA benchmarks on different tasks (image, NLP, ...), models, HW
 - Training vs Inference, Cloud vs on-premise

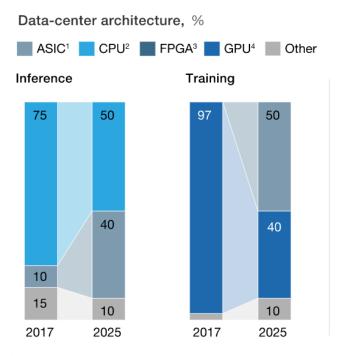


ng reported accelerator count. MLPerf name and logo are trademarks. See www.mlperf.org for more informatic

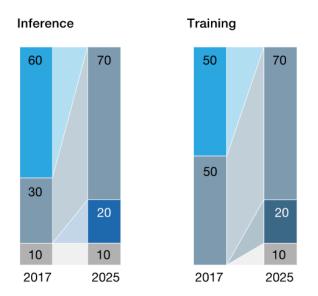
ALPerf v0.5 Inference Closed; Retrieved from www.mlperf.org 6 November 2019. Per-accelerator performance derived from the best MLPerf results for respective submissions

04/2021

Hardware (trends)



Edge architecture, %



¹Application-specific integrated circuit. ²Central processing unit. ³Field programmable gate array. ⁴Graphics-processing unit.

Source: <u>https://www.mckinsey.com/industries/semiconductors/our-insights/artificial-intelligence-hardware-new-opportunities-for-semiconductor-companies</u>

04/2021

HW4ML & MLAAS

ACCELERATED FRAMEWORKS FOR MACHINE LEARNING

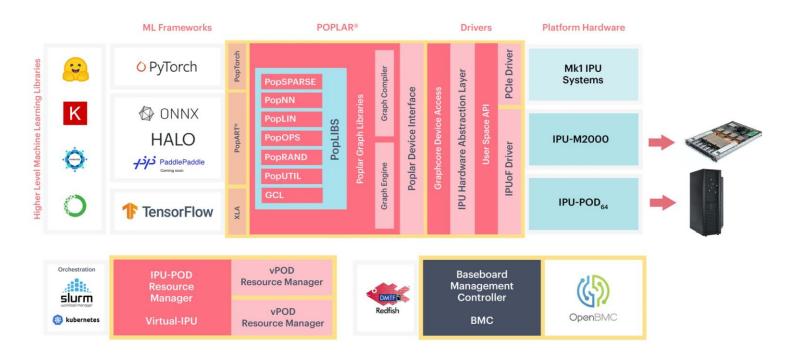
What we can use

Accelerated Frameworks (CPU)

- **<u>BigDL</u>** (distributed DL library for Apache Spark)
- DNNL: Intel's open source library for DL applications
- OpenVINO toolkit: for computer vision
- Intel DL Boost: for running popular DL frameworks on CPU
- Intel Caffe (for Xeon)
- <u>nGraph</u>: open source C++ library, compiler and runtime for DL frameworks.
- PlaidML: tensor compiler for DL on OpenCL
 - Also for GPUs…

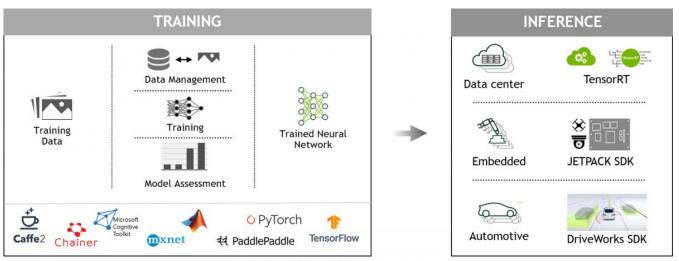
Accelerated Frameworks (IPU)

Poplar SDK



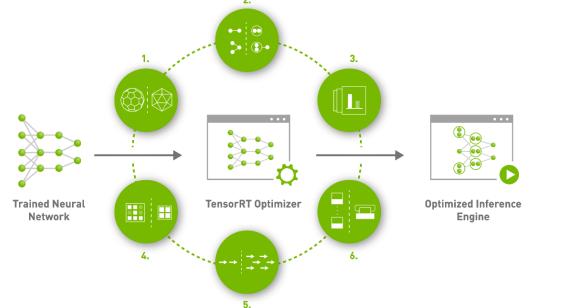
Accelerated Frameworks (GPU)

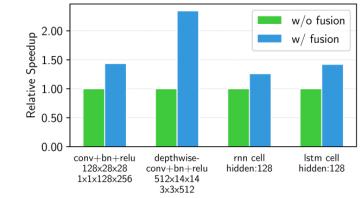
• NVIDIA



Accelerated Frameworks (Inference)

- Optimization of computational graphs for inference is key.
- E.g. Int8 can be used only for inference



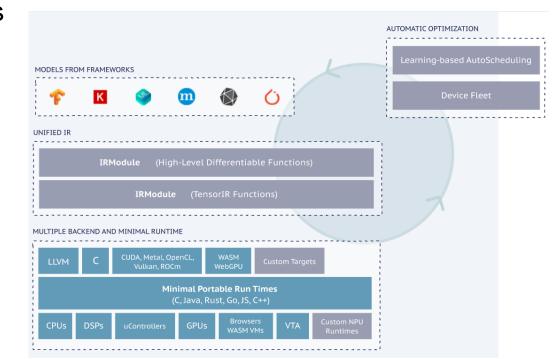


Accelerated Frameworks (Inference)

Apache TVM

04/2021

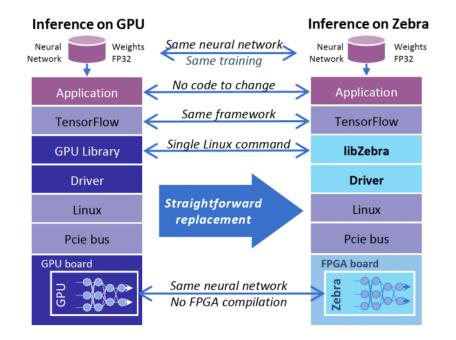
- Compilation of DL models
- Generate and optimize models for better performance
- CPUs, GPUs, FPGAs…



40

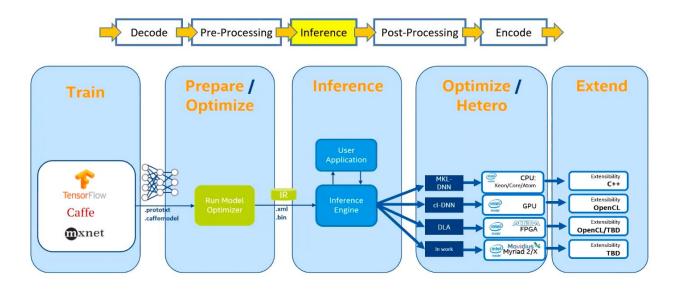
Accelerated Frameworks (Inference)

• Libraries like Zebra can help to use FPGAs for inference



Accelerated Frameworks (OpenVINO)

 Intel's framework for computer vision: CPU, NPU, FPGAs...

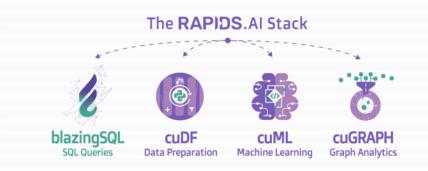


Accelerated Frameworks (GPU)

- What about other Machine Learning algorithms and models rather than Deep Learning?
 - KNN, K-means, Random Forest, Gradient Boosting, etc.
 - ASIC are only good for DNN, cannot be re-programmed
 - FPGAs can be adapted, but programming is hard
 - CPUs can have large delays for other ML models
 - GPUs are parallel devices that are flexible to execute a wide range of applications!

Accelerated Frameworks (GPU)

- <u>NV-legate</u>: replacement of Numpy and Pandas on scalable multi-GPU systems
- <u>RAPIDS</u>: set of Data Science libraries written for the GPU
 - cuPy: clone of Numpy
 - cuDF: clone of Pandas
 - cuML: clone of scikitlearn
 - cuGraph: NetworkX
 - cuXfilter: plotly, matplotlib
 - cuSpatial, cuSignal, cuStreamz
 - BlazingSQL



04/2021

HW4ML & MLAAS

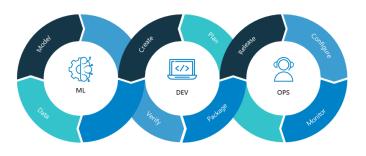
MACHINE LEARNING AS A SERVICE

Let's go to the cloud...

MLAAS

Machine Learning as a Service:

- Cloud-based full stack AI platforms
- **MLOps**: approach to ML lifecycle management:
 - Data gathering, model creation (software development lifecycle, continuous integration/continuous delivery), orchestration, deployment, health, diagnostics, governance, and business metrics.
- MLOps can be offered as MLaaS



46

MLAAS (services)

- MLaaS services and key players:
 - Natural language processing: Amazon Comprehend, Azure Web Language Model API, Google Cloud Natural Language API
 - Speech recognition: Amazon Transcribe, Azure Custom Speech Service, Google Dialogflow Enterprise Edition
 - Computer vision: Amazon Rekognition, Azure Custom Vision Service, Google Cloud Vision API
 - Al platforms: Amazon Sagemaker, Azure Machine Learning Studio, Google Cloud Machine Learning Engine

MLAAS

- **AWS** will offer their ASICs in EC2 instances
- GCP has MLOps services.
- GCP offers AutoML, and an API in Keras
 - AutoML covers hyperparameter tuning, algorithm selection, feature engineering.
- Azure also offers AutoML and MLOps services
- Others: IBM Watson ML, bigML

Azure

MLAAS (Free Environments)

- Free Jupyter Notebook environments:
 - Google Colaboratory:
 - up to 12 hours, K80, T4, P100 GPUs
 - With pro version, up to 24 hours and more RAM
 - Kaggle kernels:
 - Up to 9 hours, P100 GPUs. For R and Python
 - BlazingSQL:
 - Free for one GPU, paid for multi-GPUs
 - For RAPIDS
 - Gradient Community:
 - Up to 6 hours, public your notebook (up to 5).
 - M4000 and P5000 GPUs.

04/2021

HW4ML & MLAAS

THE END

Packing Wrapping up

Conclusions

• Hardware at a glance (approximately)...

	CPU	GPU	FPGA	ASIC
Flexibility	V. GOOD	GOOD		BAD
Software stack	V. GOOD	V. GOOD	MEDIUM	
Power	MEDIUM	MEDIUM	V. GOOD	V. GOOD
Delay	GOOD	MEDIUM	GOOD	V. GOOD
Inference	GOOD	GOOD	V. GOOD	V. GOOD
Training	BAD	V. GOOD	GOOD?	GOOD
More than DNN	GOOD	V. GOOD	MEDIUM	BAD

51

Conclusions

- Standarization of ML workflows with MLOps
- Services on the cloud with MLaaS: pay as you use
 - At different levels: application, model, code
- Data on the cloud
- Trends to AutoML

References

- J. Dean. The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design (2019) <u>https://arxiv.org/abs/1911.05289</u>
- G. Sapunov. Hardware for Deep Learning series of posts (2020): <u>https://blog.inten.to/hardware-for-deep-learning-current-state-and-trends-51c01ebbb6dc</u>
- <u>https://deepai.org/publication/tvm-end-to-end-optimization-stack-for-deep-learning</u>
- <u>https://neptune.ai/blog/best-machine-learning-as-a-service-platforms-mlaas</u>

Thank you very much

- Let's discuss
- <u>mdelamor@us.es</u>
- <u>www.cs.us.es/~mdelamor</u>

