Jet classification in t-tbar decays of heavy BSM resonances using ML

Jorge J. Martínez de Lejarza Samper

Julio Lozano Bahilo

José Salt Cairols

Resonance studies

Subject of study

- > Events with resonance particles production disintegrated in top quarks pairs
- > X could be Z'_{TC2}, G_{KK} o g_{KK} (different masses and widths)

Goal

> Jet classification to get a good resolution in the mass of the resonance

Jet classification

Traditional method: χ^2

► Uses invariant masses and p_T to minimize χ^2 ►

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{th-W}}\right]^{2} + \left[\frac{m_{jlv} - m_{tl}}{\sigma_{tl}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jlv}) - (p_{T,th} - p_{T,tl})}{\sigma_{P_{T,th}} - P_{T,tl}}\right]^{2}$$

Fifticiency ($M_{Z'} = 1 \text{TeV}$) ~70%

New methods: ML

- MC events with Z' particles disintegrated in top quarks pairs for ML algorithm training
- Jets classified according to matching variables as:
 - > Jet b from the hadronic *decay* of t/tbar quark : **bh**
 - > Jet from W decay of hadronic decay of t/tbar quark : wh
 - > Jet b from the semileptonic decay of ttbar/t quark : bl
 - Jet which is not produce in Z' resonance: oth

Methodology: Jet and event tagging

1. Jet classification:

- A file with relevant variables (27) is created to classify each jet individually
- Using 2/3 of the data for training the ML models
- Multilabel-multiclass problem → RF, GB, XGB (eXtreme Gradient Boosting) y DNN

2. Assignment and validation in events:

Applying the trained algorithm to the test data (1/3) and each piece is assigned. Two different methods:

1) Assigning each jet individually:

- . Its label is the highest value given by the ML algorithm
- Possibility of 0/2 bl/bh

2) Each class is assigned to a jet in a orderly way:

- bl assign to the jet with highest probability for this class
- bh assign regarding to the probabilities of the remaining jets
- 2 wh for those with the highest probability among the rest
- All events acquire all their pieces (it would be possible to make cuts in minimum probabilities)

Methodology: Discriminatory variables

Variables

- Different features that allows us to separate among the distinct types of jets: bh, bl, wh y oth
- Different kind of variables: kinematic, angular and tagging

Results: Hyperparameters optimization for $M_{Z'}$ =1TeV

- Individual optimization of each parameter makes no sense → they are correlated
- → Hyperparemeters sweep is performed → to find the best set of hyperparameters.

Deep Neural Network (Keras):

• **Best set found:** hidden layers=2, neurons=400, activation='relu'/'sigmoid', dropout=0.4/0.5, loss= 'binary_crossentropy', optimizer= 'adam', metrics ='accuracy', epochs=200, batch_size=256, validation_split=0.0

Random Forest (ScikitLearn):

Best set found: n_estimators= 400, max_depth=50, min_samples_split=5, min_samples_leaf=6, criterion='mse'

Gradient Boosting (ScikitLearn):

Best set found: n_estimators= 300, max_depth=15, min_samples_split=600, min_samples_leaf=30, learning_rate=0.05, subsample=0.8

eXtreme Gradient Boosting (XGB):

Best set found: n_estimators= 600, max_depth=6, colsample_bytree=0.9, gamma=0, learning_rate=0.04, subsample=0.7

	DNN	RF	GB	XGB
Default Efficiency (%)	75.1	75.6	74.9	75.4
Optimized Efficiency (%)	76.4	76.6	77.3	77.0
Time execution (s)	1406	184	559	71

Results: Efficiency vs $M_{Z'}$

Reconstruction efficiency vs. M_Z:

- > Each mass involves its own dataset of training and testing data
- > The hyperparameter optimization is performed for each mass individually

Results: Mass parametrization

Reconstruction efficiency vs. M_Z:

- \triangleright All the dataset for each mass is joined in a larger dataset, and the mass $M_{Z'}$ is added as an additional variable
- ➤ The hyperparameters optimization is performed maximizing the sum over all the efficiencies for each mass

Results: Feature selection

- For DNN → Permutation Importance
- For RF → own method in Scikit Learn
- For GB, XGB → Boruta method

Boruta method:

- > Performs a selection of the relevant variables for each jet class
- → Joining all the selected variables → a reduction from 27 to 22 is achieved.

Same efficiency, but lower computational cost!

Further work

- Improvements in ML techniques
 - Clustering methods to the sample to optimize the training of the models (K-means, Expectation-Maximization clustering, etc ...) (Work in progress)
 - *ML explainable:* methods to ease the comprehension of the ML output such as LIME (*Local Interpretable Model-agnostic Explanations*).
- Including χ^2 predictions as variables in our ML models (Work in progress)
- Boosted regime case (high Z' mass): imposible to distinguish among bh and wh \rightarrow they are joined into a unique *large-R* jet ($\Delta R = 1.0$)
- Study real data and MC background
- Running the ML models on ARTEMISA (GPU)

Thank you for your attention!

BACKUP

Mass invariant spectrum

Probabilities in each model

	DNN	RF	GB	XGB
bh	76.82	76.92	77.74	77.27
bl	90.28	90.23	91.46	91.03
wh	82.28	83.46	83.80	84.17
oth	79.28	78.54	78.91	78.08

ACADEMIC EXAMPLE:

Method 1:

Method 2:

	bh	bl	wh	oth
jet1	70.82	31.92	77.74	67.27
jet2	90.28	90.23	71.46	61.03
jet3	82.28	83.46	63.80	54.17
jet4	59.28	78.54	68.91	48.08
jet5	39.28	38.54	63.31	78.08