

High-dimensional sampling algorithms comparison for particle and astrophysics applications

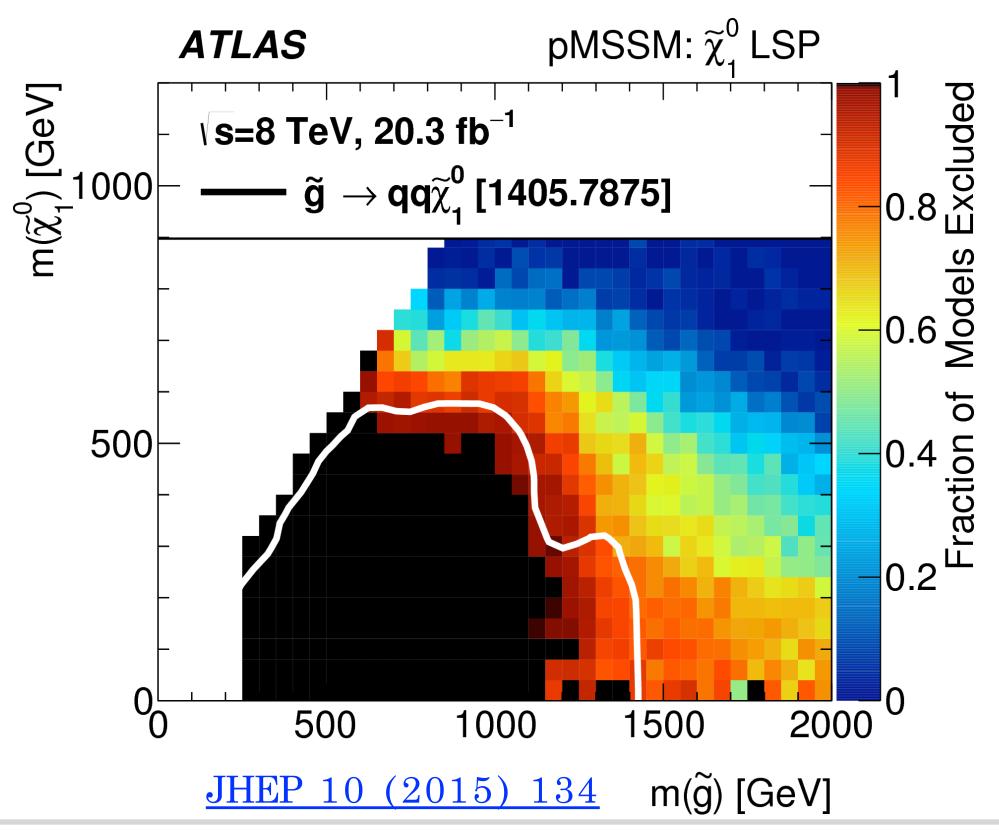
IFIC / CSIC - University of Valencia

Roberto Ruiz de Austri Bazan, <u>Judita Mamužić</u> 28 April 2021, <u>I Workshop de Computing y Software de la Red Española de LHC</u>

EXCELENCIA SEVERO OCHOA

Introduction

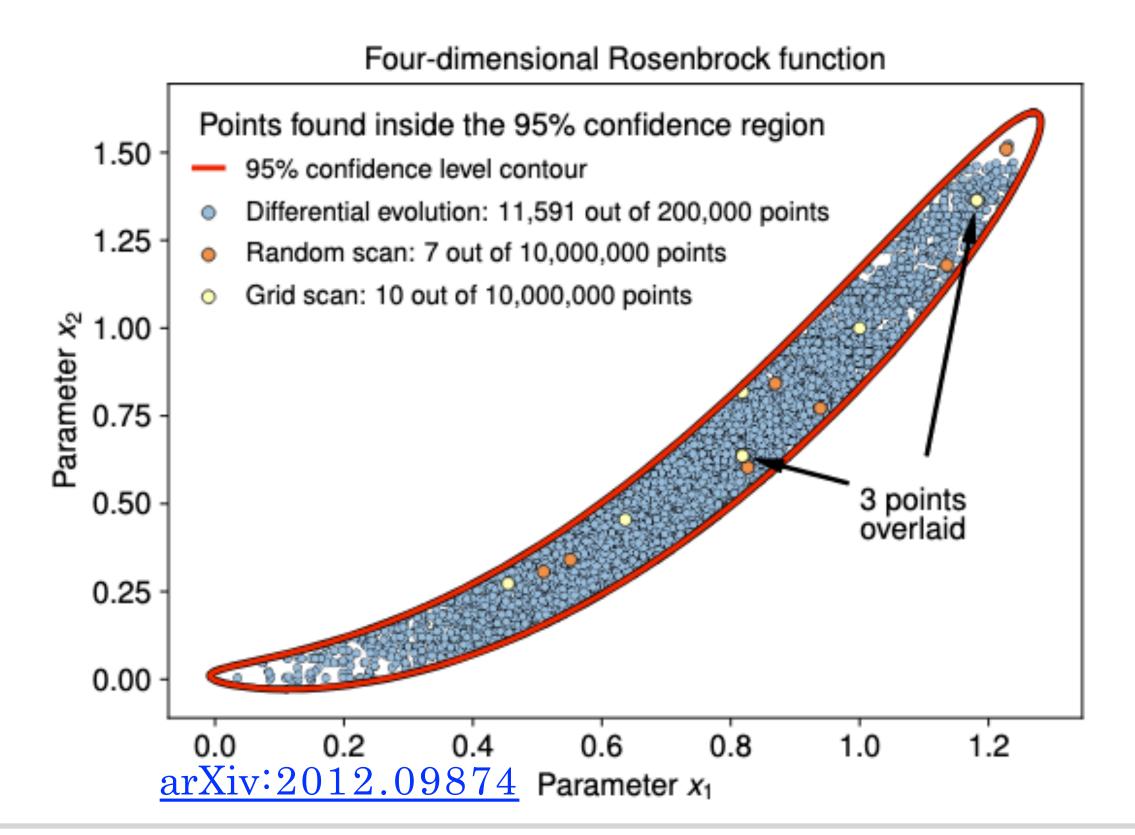
- With increasing computing power, a number of new approaches in physics searches are being studied.
- interpretation of all Supersymmetry analyses.
- Random sampling selects points only at the boundary, better/smart sampling needed.



Roberto Ruiz de Austri Bazan, Judita Mamužić | High Dimensional Sampling | 28 May 2021 | I Workshop de Computing y Software de la Red Española de LHC

• Frequent requirement is sampling in a multi-dimensional parameter space, e.g. 19-dimensional pMSSM scan for

• First step is finding an optimal minimisation algorithm for physics analysis (particle, astro-particle physics). • Comparison of minimisation algorithms performance for increasing number of dimensions in <u>arXiv:2101.04525</u>.



Optimisation Algorithms

- Help user in choosing the sampling algorithm and examples for comparison.
- Overview of state of the art minimisation algorith including also the ones not so frequently used in H
- Considering gradient free algorithms (no e.g. Min
- Compare their performance for analytic test funct for a realistic physics example (MSSM7)

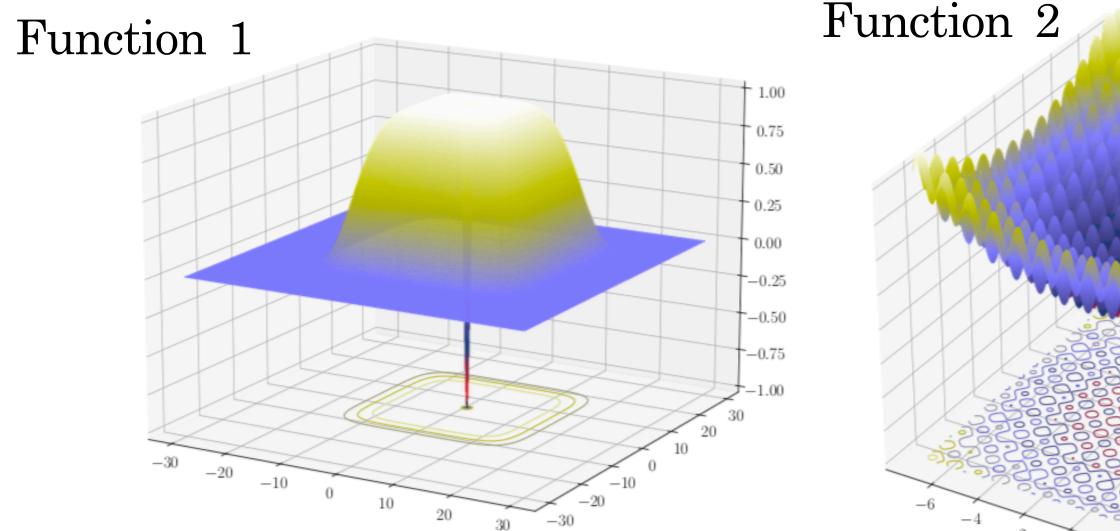
Contribution using Artemisa computing facility

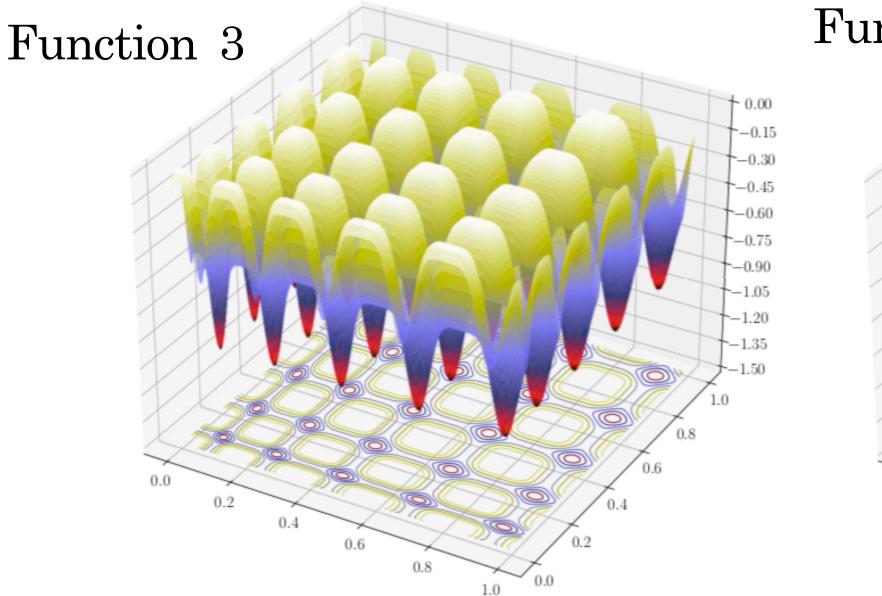
	Parameter	Explored values					
	AMPGO						
	Number of sampled points CMA-ES	2000, 5000, 10000, 20000	Res				
	Function tolerance	$10^{-11}, 10^{-7}, 10^{-4}, 10^{-1}$	Conv				
	Population size (λ)	20, 50, 100, 500	Res				
	Diver						
	Threshold for convergence	$10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$	Conv				
	Population size	2000, 5000, 10000, 20000	Res				
	Parameter adaptation scheme	λjDE					
d show	Gaussian Particle Filter						
	Width decay	0.90, 0.95, 0.99	Conv				
	Logarithmic sampling	True, False					
	Survival rate	0.2, 0.5	Re				
hms,	Initial gaussian width	2	Rel				
	GPyOpt						
HEP.	Threshold for Convergence	$10^{-6}, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$	Conv				
•	Particle Swarm Optimisation						
nuit).	Threshold for convergence	$10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}$	Conv				
	Population size	2000, 5000, 10000, 20000	Res				
tions and	Adaptive ϕ	True	Re				
	Adaptive ω	True	Re				
	PyGMO Artificial Bee Colony						
	Generations	100, 250, 500, 750	Res				
	Maximum number of tries	10, 50, 100	Rel				
	PyGMO Differential Evolution						
	Generations	100, 250, 500, 750	Res				
	Parameter adaptation scheme	iDE, jDE					
	PyGMO Grey Wolf Optimisation						
	Generations	10, 50, 100, 1000	Res				
	random sampling						
	Number of points	10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000	Res				
су.	Trust Region Bayesian Optimisation (TuRBO)						
	Max #evaluations / iteration	64, 100	Conv				

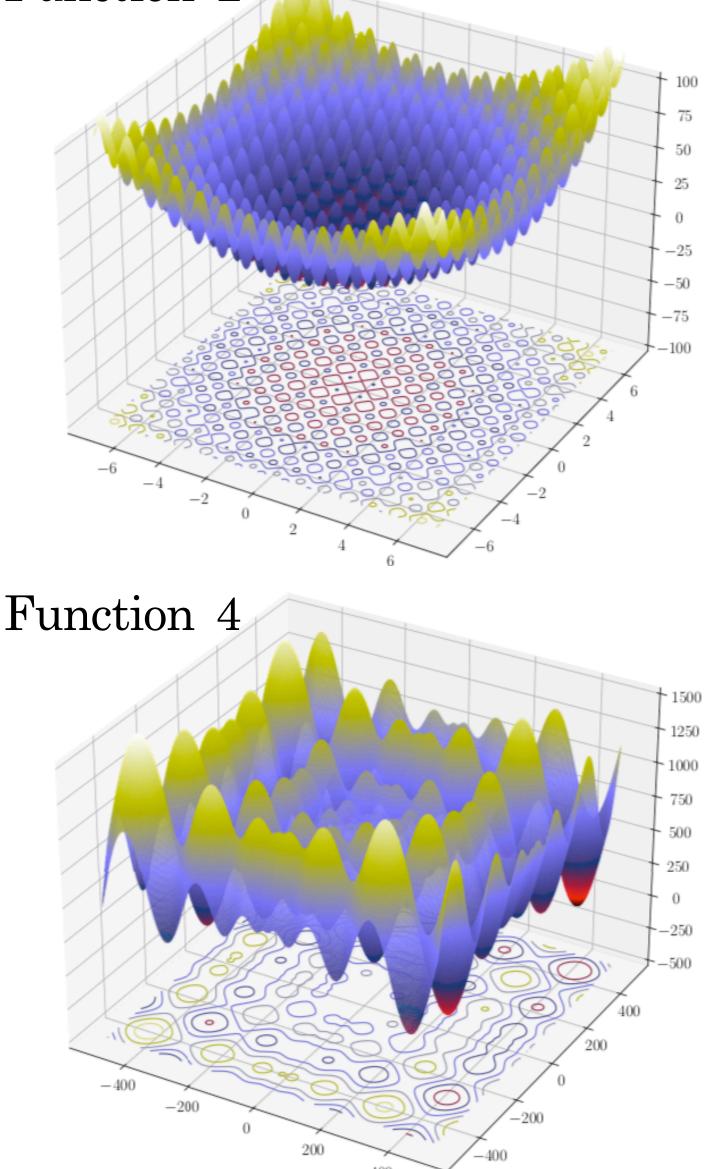
Roberto Ruiz de Austri Bazan, Judita Mamužić | High Dimensional Sampling | 28 May 2021 | I Workshop de Computing y Software de la Red Española de LHC

Type esolutionvergence esolution vergence esolution ivergence Hint leliability leliability vergence vergence esolution liability leliability esolution leliability esolution esolution esolution vergence

Test Function: 4 Analytic







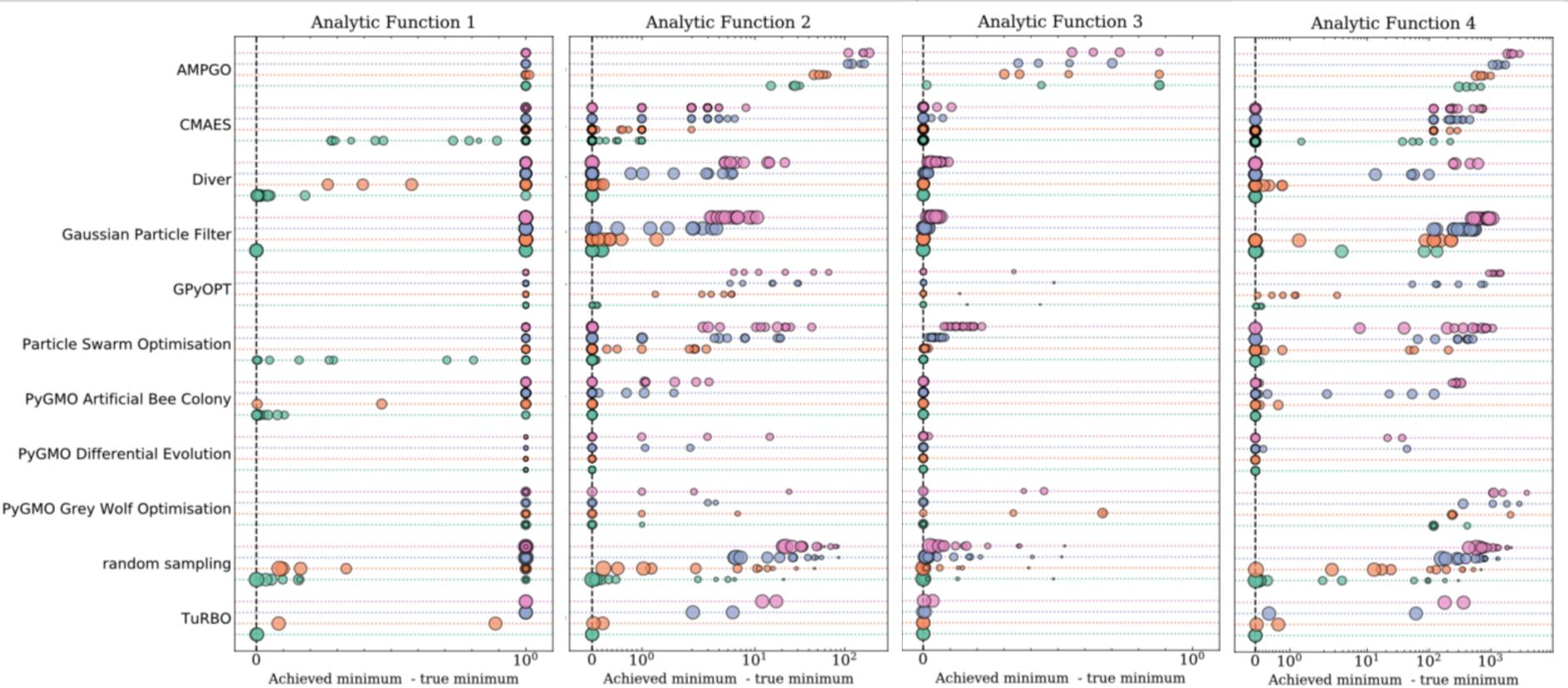
Roberto Ruiz de Austri Bazan, Judita Mamužić | High Dimensional Sampling | 28 May 2021 | I Workshop de Computing y Software de la Red Española de LHC

Compare algorithm performance using analytic test functions:

- Function 1: Sharp peak
- Function 2: High number of local minima
- Function 3: High number of global minima
- Function 4: High number of local minima

Functions shown in 2D, tests performed in 2–7D.

Performance: 4 Analytic



- Average number of evaluations (1-4): varies
- of evaluations is relevant.
- PyGMO Differential evolution good for high dimensions. ==> Different algorithms need to be explored for different applications.

Roberto Ruiz de Austri Bazan, Judita Mamužić | High Dimensional Sampling | 28 May 2021 | I Workshop de Computing y Software de la Red Española de LHC

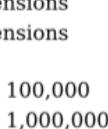
2 dimensions 5 dimensions \bigcirc 7 dimensions 3 dimensions 100010010,000

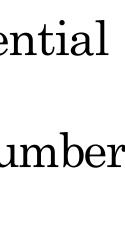
Test functions not known to the algorithms, but minimum known for evaluation.

• Performance with high dimensions (1-4): CMA-ES, Diver, PyGMO Artificial Bee Colony, PyGMO Differential

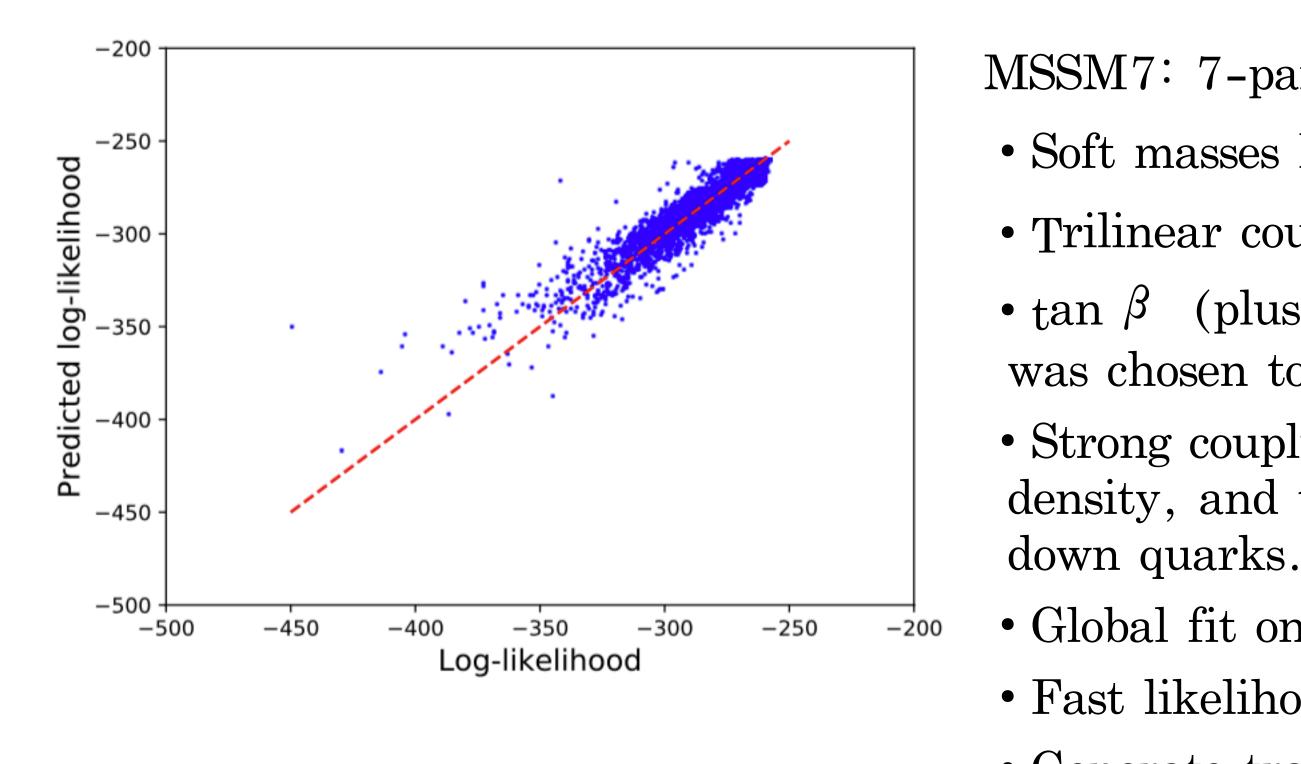
• Finding a sharp minimum (1): Diver, Turbo and random sampling work better for low dimensions, but number

• Finding global minimum (2&4): CMA-ES, Diver, Particle Swarm Optimisation, PyGMO Artificial Bee Colony,



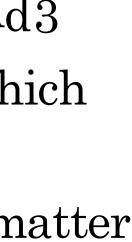


Test Function: MSSM7

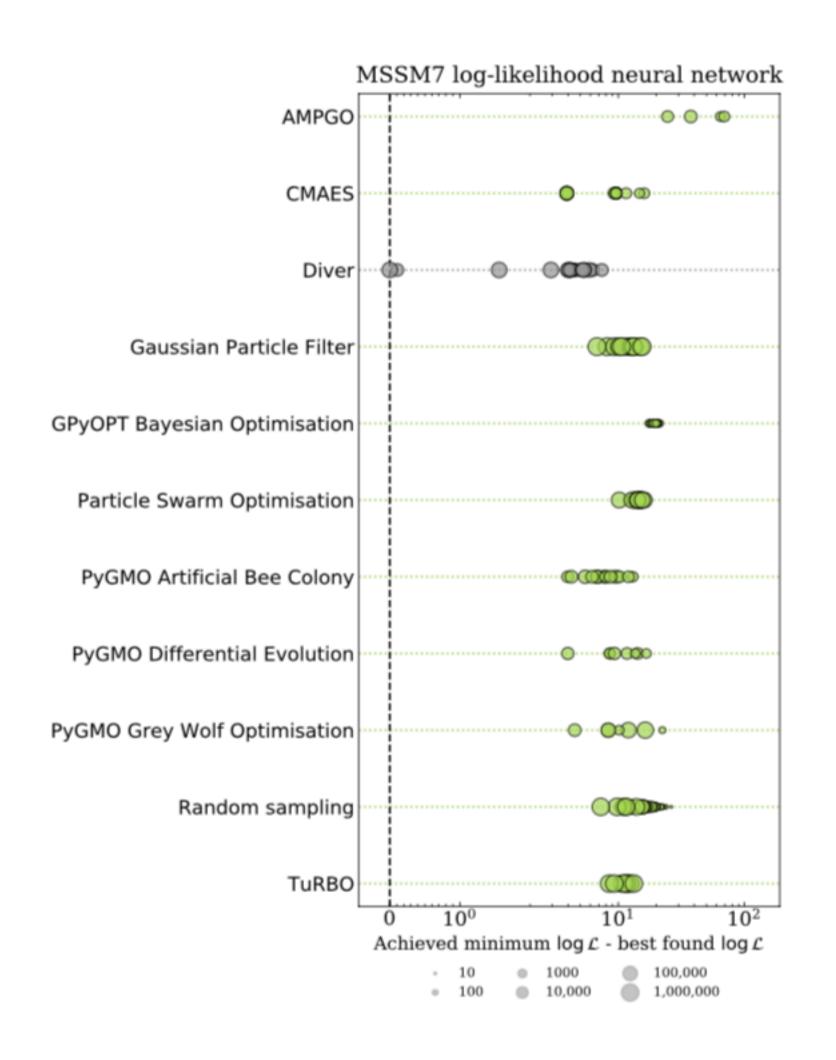


• Compare algorithms for high number of dimensions with a very complicated function.

- MSSM7: 7-parameter pMSSM:
- Soft masses M2, $mf2^{\sim}$, m^2H_u , m^2H_d
- Trilinear couplings for the third generation of quarks Au3, Ad3
- tan β (plus the input scale Q = 1 TeV and the sign of μ , which was chosen to be positive)
- Strong coupling constant, the top quark mass, the local dark matter density, and the nuclear matrix elements for the strange, up and
- Global fit on a 12-dimensional parameter space.
- Fast likelihood function interpolation using deep neural network. • Generate train sample 2.3×10^7 .
- Minimum of the function not known.



Performance: MSSM7



Best performing alg was used to sample construction).
==> Different algorithdimensional function.
==> Different algorithdimensional function.

• Best performing algorithm is Diver (however the same algorithm was used to sample the test samples, gives unavoidable bias by construction).

- ==> Different algorithms have quite poor performance for high dimensional function.
- ==> Different algorithms should be tested for specific applications.

Summary

- Optimisation algorithms and sampling in high dimensions needed in most of the physics studies.
- Algorithm comparison done for 4 analytic test functions and realistic physics example.
- algorithm and understanding of results.
- (users can use the code for their optimisation).
- Results obtained at **DarkMachines.org**

	Finding sharp minimum	Finding global minimum	Performance with high dimensions	Average number of evaluations
AMPGO	bad	bad	bad	low
CMA-ES	very low dimensions	good	good	medium
Diver	low dimensions	good	good	high
Gaussian Particle Filter	very low dimensions	low dimensions	highly configuration and function dependent	high
GPyOpt	bad	low dimensions	function dependent	low
Particle Swarm Optimisation	very low dimensions	good	configuration dependent	medium
PyGMO Artificial Bee Colony	low dimensions	good	good	medium
PyGMO Differential Evolution	bad	good	good	low
PyGMO Grey Wolf Optimisation	bad	bad	function dependent	medium
TuRBO	low dimensions	moderate dimensions	function dependent	high
random sampling	low dimensions	low dimensions	function dependent	high

Roberto Ruiz de Austri Bazan, Judita Mamužić | High Dimensional Sampling | 28 May 2021 | I Workshop de Computing y Software de la Red Española de LHC

• For a new study different algorithms should be compared, this study should help in the choice of an optimal

• Framework (software and test functions) for the study publicly available at <u>high-dimensional-sampling</u>

