Hunting dark matter signals with deep learning at the LHC

Dr. Andres D. Perez IFLP-CONICET, Argentina

Work in colaboration with: Ernesto Arganda (IFT), Anibal Medina (IFLP), and Alejandro Szynkman (IFLP)

Plan

- Models and sample generation
- Neural Network algorithms
 - Event-by-even data
 - Data as 2D histograms
 - Performance invariance with the number of background events
- Multimodel Classifiers
- Conclusions

Models and sample generation

Simplified models Kinematic features Benchmark models

Simplified models

Monojet plus missing transverse energy channel

pp → DM DM j

- DM with a spin-0 mediator
- DM with a spin-1 mediator

DM with a spin-2 mediator

Axion-Like Particle (ALP) as DM

pp → a j

SM background

 $pp \rightarrow Zj(Z \rightarrow vv)$

Simplified models

Each event has the monojet kinematic information $(\mathbf{p}_{\tau}^{j}, \mathbf{\eta}^{j}, \mathbf{\Phi}^{j})$

- 1. The azimuthal angle distribution does not show any useful structure.
- 2. The coupling values do not modify the kinematic distributions.

We simulated 1.5M SM events and 0.5M New Physics events

MadGraph5_aMC@NLO to generate events with monojets plus missing energy at parton level. Parton shower and hadronization are performed with **Pythia**.

Detector-level data is simulated using **Delphes** with the default ATLAS card.

 \sqrt{s} = 14TeV generation level cuts: p_i^{T} ≥130GeV and $|\eta_i|$ ≤5 for the leading jet.

Neural Networks algorithms

Event-by-even data
Data as 2D histograms
Performance invariance with the number of background events

DNN with Event-by-event data

We simulated 1.5M SM events and 0.5M New Physics events

Each event has the monojet kinematic information $(\mathbf{p}_{\tau}^{j}, \mathbf{n}^{j}, \mathbf{\Phi}^{j})$

Data samples are divided with a 0.64:0.20:0.16 train-test-validation ratio

Trained each benchmark model vs SM **individually**.

DNN with Event-by-event data

Receiver Operating Characteristic (ROC) curves:

Poor performance

The area under the ROC curve (AUC), a conventional metric to test the performance of binary classifiers

AUC=1 is a perfect classifier, and **AUC=0.5** represents a random classifier

DNN with data as 2D histograms

S: # NP events B: # SM events

The jet azimuthal angle Φ^j does not provide any useful information.

We can construct 2D histograms made from the pair $(\mathbf{p}_{\mathbf{r}}^{\mathbf{j}}, \mathbf{n}^{\mathbf{j}})$

- . 20k histograms with only SM events
- . 20k histograms with NP + SM events

per benchmark model and per S/B ratio

DNN with data as 2D histograms

We simulated

20k SM only histograms and

20k New Physics + SM histograms (per benchmark model and per S/B ratio)

DNN trained to discriminate:
histograms with SM only events vs
histograms with NP+SM events

Trained each benchmark model vs SM individually.

DNN with data as 2D histograms

Each point represents a DNN trained with a data set with a specific benchmark, S and B

Great performance!

AUC=1 is a perfect classifier, and **AUC=0.5** represents a random classifier

S: # NP events B: # SM events

Performance invariance with B

Performance is not modified significantly for different values of B, if the results are presented as a function of S/VB.

Performance invariance with B

To know if a DNN with 2D histograms could distinguish a particular new physics model from the SM background, we only need to:

- Identify the curve of the corresponding benchmark model
- Calculate the model cross section for the chosen couplings
- Calculate the SM background cross section
- Calculate SI√B for any luminosity, and check the corresponding AUC

Also, we can have an idea of the luminosity needed to obtain a given efficiency. Change the last step for:

• Identify the SI√B value for the corresponding AUC you would like to get and calculate the luminosity needed

events = cross section * luminosity * detector efficiency

Multimodel classifiers

Multiclass classifier

A single DNN trained with **several** new physics models:

SM only vs Benchmark 1 + SM vs ... vs Benchmark N + SM (labeled '0') (labeled '1') (labeled 'N')

(In this work, 7 NP+SM models and SM only)

Test the DNN

Histogram of the frequency of occurrence can be constructed

Which model is predicted by the DNN?

Testing with training models

Testing with non-training models

Input models completely new to the DNN

Testing with non-training models

Input models completely new to the DNN

The DNN classifies "kinematic distributions" not "models"

Predicts compatible kinetic distribution of the underlying model.

Conclusions

Conclusions

Search for dark matter signatures at the LHC using deep learning

- Monojet plus missing transverse energy channel of four simplified dark matter frameworks: ALP and spin-0, spin-1, and spin-2 mediator models
- One usual drawback of supervised techniques: the need of a specific data set per model → we describe a family of models with a single data set

Neural Networks (individual classifiers):

- Discerning new physics signatures from SM background, two data representations:
 - → event-by-event data → poor performance
 - → 2D histograms
- → great performance
- DNN performance independent of the number of background event with S/\sqrt{B} as variable

Easy to check if a DNN could discriminate a particular model from the SM, for any luminosity. Or to estimate the luminosity needed to achieve a certain performance level.

Multimodel classifiers:

- Supervised algorithms trained with several benchmark models per DNN.
 - a more challenging task, but a good performance is achieved.
 - result points towards a compatible kinetic distribution, a key tool to guide further analysis

Thank you!

