Searching for Heavy Neutrino at Future Hadron Collider

Chang-Yuan Yao

(Nankai University, Tianjin, China)

Based on arXiv:2103.03548 In collaboration with Chengcheng Han and Tong Li

Outline

- Type I Seesaw in U(1)_{B-L} extension model
- Heavy neutrino decay patterns
- LNV signature with tau lepton at the LHC upgrade
- Summary

Seesaw model

Weinberg operator:

$$\mathscr{L} = -rac{1}{2} rac{g_{lphaeta}}{\Lambda} \Big(\overline{\ell^C_{Llpha}} \widetilde{H}^* \Big) \Big({\widetilde{H}}^\dagger \ell_{Leta} \Big) + ext{H.c.}$$

Type-I seesaw: SM + right-handed neutrinos + L violation (Minkowski 1977; Yanagida 1979; Glashow 1979; Gell-Mann, Ramond, Slansky 1979; Mohapatra, Senjanovic 1980)

$U(1)_{B-L}$ extension

U'(1) is a linear combination of $U(1)_Y$ and $U(1)_{B-L}$ after the spontaneous breaking of electroweak and B-L symmetry

$$D_{\mu} \ni ig_1YB_{\mu} + i(g'_1Y + g'Y_{BL})B'_{\mu} = ig_1YB_{\mu} + ig_X(x'_1Y + x'Y_{BL})B'_{\mu}$$

Most economical extension: $x' = 1, x'_1 = 0$ $U(1)' = U(1)_{B-L}$ and $g_X = g'$

A new scalar $S \sim (1, 1, 0, 2)$ is introduced to break the $U(1)_{B-L}$ symmetry and generate the masses of right-handed neutrinos $N_R \sim (1, 1, 0, -1)$

A new gauge boson Z' can get mass $M_{Z'} = 2g'v_s$ from the kinetic term

$${\cal L}_k = (D_\mu S)^\dagger (D^\mu S)$$
 with $D_\mu S = \partial_\mu S + i 2g' B'_\mu S$

The interaction for \mathbf{Z}' and fermions $\boldsymbol{\psi}$ is obtained from the kinetic term

$$=i\overline{\psi}\gamma^{\mu}D_{\mu}\psi$$
 with $D_{\mu}\psi=\partial_{\mu}\psi+ig'Y_{\psi}'B_{\mu}'\psi$

Production and decay of Z'

 \mathcal{L}_k

$$pp
ightarrow Z'
ightarrow NN, \ \ell^+\ell^-, \ au^+ au^-$$

Exp. constraints

Exp. constraints

U(1)_{B-L} extension

B-L accidental symmetry + Majorana neutrino masses

U'(1) is a linear combination of $U(1)_Y$ and $U(1)_{B-L}$ after the spontaneous breaking of electroweak and B-L symmetry

$$\mathrm{U}(1)_Y, \mathrm{U}(1)_{\mathrm{B-L}}
ightarrow \mathrm{U}'(1)$$

anomaly cancellation
$$\langle N_R \rangle \Rightarrow$$
 neutrino masses
Yukawa interaction: $-\mathcal{L}_Y^I = Y_\nu^D \overline{l}_L \widetilde{H} N_R + \frac{1}{2} Y_\nu^M \overline{(N^c)_L} N_R S + h.c.$

 $N_R \sim (1,1,0,-1)$ $S \sim (1,1,0,2)$

After *H*, *S* receives the vev $\langle H \rangle = v/\sqrt{2}$ and $\langle S \rangle = v_S/\sqrt{2}$, one has the diagonalization of the mass matrix

$$\mathbb{N}^{\dagger} \begin{pmatrix} 0 & m_D \\ m_D^T & M \end{pmatrix} \mathbb{N}^* = \begin{pmatrix} m_{\nu} & 0 \\ 0 & M_N \end{pmatrix}$$

with

$$M_R = Y_{\nu}^M v_S / \sqrt{2}$$
$$m_D = Y_{\nu}^D v / \sqrt{2}$$

$U(1)_{R-1}$ extension

Eigenstate transformation:

$$\begin{pmatrix} \nu_L \\ (N^c)_L \end{pmatrix} = \mathbb{N} \begin{pmatrix} \nu_L \\ (N^c)_L \end{pmatrix}_{mass}, \quad \mathbb{N} = \begin{pmatrix} U & V \\ X & Y \end{pmatrix}$$

The **PMNS** matrix and **light-heavy** mixing matrix:

 $E^{\dagger}U \equiv U_{PMNS}$, $E^{\dagger}V \equiv V_{\ell N}$ *E* diagonalize the charged lepton mass matrix

Relation between mixing matrices and mass eigenvalues:

$$U_{PMNS}^* m_{\nu}^{diag} U_{PMNS}^{\dagger} + V_{\ell N}^* M_N^{diag} V_{\ell N}^{\dagger} = 0$$

$$egin{aligned} m_
u^{diag} &= (m_1, m_2, m_3) \ M_N^{diag} &= (M_{N_1}, M_{N_2}, M_{N_3}) \end{aligned}$$

Casas-Ibarra parametrization:

 $V_{\ell N} = U_{PMNS} (m_{
u}^{diag})^{1/2} \Omega (M_{N}^{diag})^{-1/2}$

For simplicity, we take the arbitrary orthogonal complex matrix as
$$\Omega = I$$

$$U_{PMNS} = egin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-\mathrm{i}\delta}s_{13} \ -c_{12}s_{13}s_{23}e^{\mathrm{i}\delta} - c_{23}s_{12} & c_{12}c_{23} - e^{\mathrm{i}\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \ s_{12}s_{23} - e^{\mathrm{i}\delta}c_{12}c_{23}s_{13} & -c_{23}s_{12}s_{13}e^{\mathrm{i}\delta} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix} imes \mathrm{diag}\Big(e^{i\Phi_1/2}, 1, e^{i\Phi_2/2}\Big)$$

Mixing parameters

Tree-flavor oscillation parameters [NuFIT 5.0 (2020)]

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
with SK atmospheric data	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	0.269 ightarrow 0.343	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^\circ$	$33.44\substack{+0.77 \\ -0.74}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	0.415 ightarrow 0.616	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$
	$ heta_{23}/^{\circ}$	$49.2\substack{+0.9 \\ -1.2}$	$40.1 \rightarrow 51.7$	$49.3\substack{+0.9 \\ -1.1}$	$40.3 \rightarrow 51.8$
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$
	$ heta_{13}/^\circ$	$8.57\substack{+0.12 \\ -0.12}$	8.20 ightarrow 8.93	$8.60\substack{+0.12\\-0.12}$	8.24 ightarrow 8.96
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.04	$7.42\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.04
	${\Delta m^2_{3\ell}\over 10^{-3}~{ m eV}^2}$	$+2.517\substack{+0.026\\-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498\substack{+0.028\\-0.028}$	-2.581 ightarrow -2.414

Decay patterns of *N*

Asymptotic behavior holds when $M_{N_i} \gg M_W, M_Z, M_h$

$$\Gamma(N_i \to \sum_{\ell} \ell^{\pm} W^{\mp}) \approx \Gamma(N_i \to \sum_{\nu} \nu Z + \bar{\nu} Z) \approx \Gamma(N_i \to \sum_{\nu} \nu h + \bar{\nu} h)$$

Partial decay width

$$\Gamma(N_i \to \ell^{\pm} W^{\mp}) = \frac{G_F}{8\sqrt{2}\pi} |V_{\ell N_i}|^2 M_{N_i} (M_{N_i}^2 + 2M_W^2) \left(1 - \frac{M_W^2}{M_{N_i}^2}\right)^2$$

Benchmark decay branching ratios of N_i for NH(IH) case

$\boxed{BR(N_i)}$	$e^{\pm}W^{\mp}$	$\mu^{\pm}W^{\mp}$	$ au^{\pm}W^{\mp}$
N_1	17% (17%)	1.85% (3.8%)	6.15% (4.2%)
N_2	7.43% (7.43%)	9.15% (7.14%)	8.42% (10.43%)
N_3	0.55% (0.56%)	14% (14.04%)	10.45% (10.4%)

LNV signature

Signal

In the $U(1)_{(B-L)_3}$ model, the most appealing signal channel is

 $b\bar{b} \to Z' \to NN \to \ell^\pm \tau^\pm W^\mp W^\mp$

with hadronically decaying W boson

Background

The major irreducible SM backgrounds include

$$\begin{array}{c} t\bar{t}W^{\pm} \rightarrow b\bar{b}W^{\pm}W^{\pm}W^{\mp} \\ \mu^{\pm}\tau^{\pm} jj \\ t\bar{t}Z \rightarrow b\bar{b}W^{+}W^{-}Z \\ \mu^{\pm}/\tau^{\pm}jj & \tau^{\pm}/\mu^{\pm} \\ \hline WZ + \text{jets} \\ \tau^{\pm}/\mu^{\pm} & \mu^{\pm}/\tau^{\pm} \end{array}$$

Reconstruction & Cuts

Charged leptons

- select events with exactly one muon and one tau with same sign
- Muon with $|\eta(\mu)| < 2.4$, $p_T > 25GeV$ and tau with $|\eta(\tau)| < 2.5$, $p_T > 25GeV$

W boson

- Resolved W
 - reconstruct each W boson from two resolved jets with |η|<2.4, p_T>25GeV
- Boosted W
 - The fat jet is reconstructed via the anti-kT algorithm with R=0.8. The fat jet with 65<M_J<95GeV, p_T(J)>250GeV and |η(J)|<2.5 is identified as boosted W candidate

Reconstruct N_R

- Given the same-sign μ and τ and the two reconstructed W bosons, we find the combination that minimizes $\Delta R(\mu, W_1) + \Delta R(\tau, W_2)$ and then construct N^{μ} and N^{τ} respectively denoting the heavy neutrino decay into μ and τ
- Apply p_T and mass window cut: $p_T(N^{\mu})>250GeV$, $p_T(N^{\tau})>200GeV$, $|M_{N\mu}-M_N|<0.1M_N$;

Distributions

Projected sensitivity

- The HL-LHC can produce at most 20 LNV events for M_{z'} = 1 TeV and cannot reach 5σ discovery
- The FCC-hh can discover the LNV signal with tau lepton for M_{Z'} up to 3 TeV and N = N₃ with the fixed g' = 0.6 and the integrated luminosity of 30 ab⁻¹

Projected sensitivity

15

Projected sensitivity of the gauge coupling g' versus M_{Z'}

- The gray curve shows the 95% C.L. limit from the search for $Z' \rightarrow \tau \tau$ at LHC
- The searches for $Z' \rightarrow b\overline{b}$ or $Z' \rightarrow t\overline{t}$ do not place severe constraint
- The gauge coupling g' down to 0.12 (0.07) can be probed through the LNV signature with tau lepton by the FCC-hh with the integrated luminosity of 3 (30) ab⁻¹ and M_{Z'} = 1 TeV.

Summary

- The lepton number violation at colliders can be probed by the $U(1)_{B-L}$ extension of the canonical Type I Seesaw
- Flavored $U(1)_{(B-L)_3}$ model has weaker constraints from experiments
- The HL-LHC cannot reach 5σ discovery for heavy neutrinos
- The FCC-hh can discover the LNV signal with tau lepton for M_Z up to 2.2 (3) TeV with g' = 0.6 and the integrated luminosity of 3 (30) ab⁻¹
- The gauge coupling g' down to 0.12 (0.07) can be probed through the LNV signature with tau lepton by the FCC-hh with the integrated luminosity of 3 (30) ab⁻¹ and M_{z'} = 1 TeV.

Backup

 Lesson 1: two necessary conditions to test a seesaw model with heavy right-handed Majorana neutrinos at the LHC:
 ---Masses of heavy Majorana neutrinos must be of O (1) TeV or below
 ---Light-heavy neutrino mixing (i.e. M_D/M_R) must be large enough

Lesson 2: non-unitarity of the light ν flavor mixing matrix might lead to observable effects in ν oscillations and rare processes.

Lesson 3: nontrivial limits on heavy Majorana ν 's could be derived at the LHC, if the SM backgrounds are small for a specific final state.

$$\triangle L = 2$$
 like-sign dilepton events

$$pp o W^{\pm}W^{\pm} o \mu^{\pm}\mu^{\pm}jj$$
 and $pp o W^{\pm} o \mu^{\pm}N o \mu^{\pm}\mu^{\pm}jj$

Backup

Lepton number violation: like-sign dilepton events at hadron colliders, such as Tevatron (~2 TeV) and LHC (~14 TeV).

arXiv:0901.3589 [hep-ph] 23 Jan 2009