

Jet clustering interface in FCC Analyses & b-tagging

Julie Munch Torndal julie.munch.torndal@cern.ch

Niels Bohr Institute

April 26, 2021

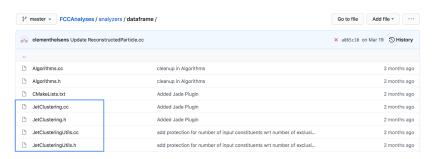
Analysis of top-quark electroweak couplings to the photon and the Z boson in pair produced events

Signal:

Semileptonic channel

$$t\bar{t} \rightarrow b\bar{b}W^+W^- \rightarrow b\bar{b}q\bar{q}\ell\nu_{\ell}$$

Planned phase of FCC-ee @ $\sqrt{s} = 365 GeV$


→ Jet studies!

Jet Clustering Interface in FCCAnalyses

Interface for later stage process adaptive jet clustering

- flexible "after burner" using FastJet
- dedicated more towards e^+e^- collisions
- run multiple jet reconstructions at once
- select input particles
- access to jet constituents

Credit to Clement Helsens for setting up the interface

Jet Algorithms	
k _t	
Anti- <i>k</i> _t	
Cambridge/Aachen	
Generalised- k_t	
Durham	
Generalised- k_t for e^+e^-	
Valencia	
Jade	

Recombination Schemes
E-scheme
p_t -scheme
p_t^2 -scheme
E_t -scheme
E_t^2 -scheme
Boost-invariant p_t -scheme
Boost-invariant p_t^2 -scheme
E0-scheme
<i>p</i> -scheme

The jet definition depends on

- which partons are chosen to be combined into the jet
- how they are combined into the jet

Jet Algorithms

Jet Algorithms		
k_t	clustering_kt	
Anti- k_t	${\tt clustering_antikt}$	
Cambridge/Aachen	clustering_cambridge	
Generalised- k_t	clustering_genkt	
Durham	clustering_ee_kt	
Generalised- k_t for e^+e^-	clustering_ee_genkt	
Valencia	clustering_Valencia	
Jade	${ t clustering_Jade}$	

suitable for ppcollisions suitable for e^+e^-

Plugins

- The choice for the most suitable jet algorithm is specific to the analysis
- Plugins makes it possible to add your own favourite jet algorithm

Recombination schemes (coming soon)

Recombination Schemes		
E-scheme		
p_t -scheme		
p_t^2 -scheme		
E_t -scheme		
E_t^2 -scheme		
Boost-invariant p_t -scheme		
Boost-invariant p_t^2 -scheme		

E0-scheme	
<i>p</i> -scheme	

- FastJet is focused towards hadron colliders and besides the E-scheme it does not have dedicated schemes for e⁺e⁻ collisions.
- E0- and p-scheme are external recombination schemes

E-scheme: Parton i and j are replaced by a pseudojet k with four-momentum

$$\mathbf{p}_k = \mathbf{p}_i + \mathbf{p}_i$$

 Lorentz invariant, energy and momentum conserved, non-zero mass for pseudojet k.

E0-scheme: The four-momentum of pseudojet *k* is rescaled to have zero invariant mass

$$E_k = E_i + E_j$$
 , $\vec{p_k} = \frac{E_k}{|\vec{p_i} + \vec{p_j}|} \cdot (\vec{p_i} + \vec{p_j})$

Not Lorentz invariant, only conserves energy.

p-scheme: The four-momentum is constructed to have zero invariant mass

$$\vec{p_k} = \vec{p_i} + \vec{p_j}$$
 , $E_k = |\vec{p_k}|$

 Not Lorentz invariant, only conserves momentum.

Example code

```
#build pseudo jets from momentum components and energy
                              "JetClusteringUtils::set_pseudoJets(RP_px, RP_py, RP_pz, RP_e)")
     .Define("pseudo jets".
     #run iet clustering with all reconstructed particles.
     #jade algorithm, R=0.5, exclusive clustering, exactly 4 jets, sorted by E. E0-scheme
     .Define("FCCAnalysesJets_jade", "JetClustering::clustering_jade(0.5, 2, 4, 1, 10)(pseudo_jets)")
     #get the jets out of the struct
     .Define("jets_jade",
                                    "JetClusteringUtils::get pseudoJets(FCCAnalysesJets jade)")
     #get the jets constituents out of the struct
     .Define("jetconstituents_jade","JetClusteringUtils::get_constituents(FCCAnalysesJets_jade)")
     #get some variables
     .Define("jets_jade_px",
                                    "JetClusteringUtils::get_px(jets_jade)")
     .Define("jets jade py".
                                    "JetClusteringUtils::get pv(jets jade)")
     .Define("jets jade pz",
                                    "JetClusteringUtils::get_pz(jets_jade)")
     .Define("jets_jade_btag",
                                    "JetClusteringUtils::get_btag(jets_jade, Particle, 0.80)")
                                                 /** Structure to keep useful informations for the jets*/
                                                  struct FCCAnalysesJet{
                                                    ROOT::VecOps::RVec<fastjet::PseudoJet> jets;
Arguments for jet definition:
                                                    std::vector<std::vector<int>> constituents:
                                                  }:
```

- 1. Jet cone radius
- 2. Clustering
 - 0=inclusive clustering,
 - 1=exclusive clustering with dcut,
 - 2=exclusive clustering to exactly njets,
 - 3=exclusive clustering up to exactly njets,
 - 4=exclusive clustering with yout.
- 3.) Cut-value depending on clustering

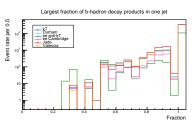
- 4.) Ordering of returned jets
 - 0=sorted by p_t .
 - 1=sorted by E.
- (5.) Recombination scheme
- (+.) Additional input parameters specific to jet algorithm
 - see JetClustering.h

b-tagging a la Delphes (coming soon)

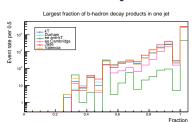
In Delphes, a jet is b-tagged if a b-parton lies within a cone radius of $\Delta R < 0.5$. An efficiency formula is applied e.g. in delphes/cards/delphes_card_IDEA.tcl:

```
# efficiency formula for b-jets
add EfficiencyFormula {5} {0.80}
```

In FCCAnalyses, a jet is b-tagged if a b-parton lies within a vector angle < 0.3. It takes a flat efficiency (for now).


```
.Define("jets_jade_btag", "JetClusteringUtils::get_btag(jets_jade, Particle, 0.80)")
```

OBS: Only works for samples generated with Pythia since b-partons are selected from their status code (71-79) and PDG.



b-hadron distribution in jets Jet Studies

Reco jets

Particle jets

Events with full separation of b-hadron decay products:

k_T: 76.3 ± 0.6 %

 \bullet Durham: 79.2 \pm 0.6 %

ullet ee anti-k $_{\mathsf{T}}$: 12.3 \pm 0.2 %

• ee Cambridge: $61.7 \pm 0.6 \%$ • Jade: $73.8 \pm 0.6 \%$

 \bullet Valencia: 76.9 \pm 0.6 %

Events with full separation of b-hadron decay products:

 \bullet k_T: 62.2 \pm 0.6 %

 \bullet Durham: 62.8 \pm 0.6 %

ullet ee anti-k_T: 3.71 \pm 0.14 %

ullet ee Cambridge: 42.5 \pm 0.5 %

• Jade: 54.3 ± 0.5 %

ullet Valencia: 64.1 \pm 0.6 %

FCC

Future works for b-tagging?

b-tagging a la Delphes:

Exploit MC and match jet to b-hadron instead of b-parton

b-tagging using b-hadron decay products:

• Energy sharing or track sharing?

Proto-jets – force all decay products into the same jet

b-tagging with vertexing:

Realistic b-tagging requires vertexing

Primary vertex fitters are available in FCCAnalyses

Secondary vertex finding tools are not available yet

• Two suggestions:

- Apply vertex fitter to constituents of a jet and use distance to the IP (0,0,0). Assumes good separation of decay products in the jets and does not account for potential tertiary vertex.
- Use perfect seeding from MC to look for secondary vertices with MC to RP associations. See Analysis of Bc / B+ to tau nu presented by Clement Helsens at FCC-ee Physics Performance meeting, April 19, 2021.

light jet

b iet

liaht iet