

Istituto Nazionale di Fisica Nucleare

Fisica agli Acceleratori in Bicocca

Maurizio Martinelli Università di Milano Bicocca e INFN

Università Bicocca 24.03.2021

Rispondere a queste domande

• Come è nato e come si è sviluppato l'Universo?

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Rispondere a queste domande

- Come è nato e come si è sviluppato l'Universo?
- Perché il rapporto materia / antimateria è circa 10¹⁰?

Rispondere a queste domande

- Come è nato e come si è sviluppato l'Universo?
- Perché il rapporto materia / antimateria è circa 10¹⁰?
- Cos'è la materia oscura?

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Rispondere a queste domande

- Come è nato e come si è sviluppato l'Universo?
- Perché il rapporto materia / antimateria è circa 10¹⁰?
- Cos'è la materia oscura?

Sviluppare Tecnologie Innovative

• Per raccogliere i dati

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Rispondere a queste domande

- Come è nato e come si è sviluppato l'Universo?
- Perché il rapporto materia / antimateria è circa 10¹⁰?
- Cos'è la materia oscura?

Sviluppare Tecnologie Innovative

- Per raccogliere i dati
- Per analizzare i dati (big data)

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Cosa si Impara da una tesi in Particelle?

Metodo Integrazione in una grande collaborazione internazionale

Programmazione C++ Python GPU

Tecniche di Analisi Big Data Machine Learning Calcolo parallelo

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

...oltre ad approfondirne l'argomento

Tecnologia Sviluppo di sensori d'avanguardia

LHC@CERN

pp 13 TeV (anche pPb e PbPb)

40 MHz collisioni

~1200 magneti superconduttori

4 esperimenti principali

Infrastrutture di Ricerca

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

27km circonferenza

> 100m sottoterra

Punto più freddo dell'Universo (1.9K)

Alcuni Risultati di LHC

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

9

UNIVERSI

Alcuni Risultati di LHC - Rassicuranti Conferme

Alcuni Risultati di LHC - Piacevoli Sorprese

Seminario M. Pappagallo - 7.4.2021

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

11

UNIVERSI

Alcuni Risultati di LHC - Grandi Sorprese

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

NON CONSERVAZIONE UNIVERSALITÀ LEPTONICA

BUNIVERSI

Priorità della Fisica delle Particelle nei Prossimi Anni

European Strategy for Particle Physics 2020

- Studio dell'Higgs
- Studio delle Interazioni Forti (QCD)
- CP nelle interazioni forti (ricerca Assione)
- Fisica del Flavour
- Fisica del Neutrino
- Materia Oscura
- Ricerca di particelle a lunga vita media
- Cosmo
- Gravità

UNIVERSI

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Priorità della Fisica delle Particelle nei Prossimi Anni

European Strategy for Particle Physics 2020

- Studio dell'Higgs
- Studio delle Interazioni Forti (QCD)
- CP nelle interazioni forti (ricerca Assione)
- Fisica del Flavour
- Fisica del Neutrino
- Materia Oscura
- Ricerca di particelle a lunga vita media
- Cosmo
- Gravità

Alte Energie fondamentali per dare risposta a gran parte di queste domande

14

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Futuro di LHC

Commissioning with beam Hardware commissioning/magnet training

2032	2033	2034	2035	2036
	J FMAMJJASOND Run 5	J F M A M J J A S O N D	J F M A M J J A S O N D	J F M A M J J A S O N D

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Futuro del CERN (2035-...)

B

Attività in Bicocca

4000 ricercatori 200 istituti e università 40 nazioni

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

1400 ricercatori 86 istituti e università 18 nazioni

Sviluppo Rivelatori

Scelta Tecnologia

Di

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Disegno

Prototipo

Installazione

LHCb in Bicocca

Decadimenti Rari $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$ $R_D = \frac{\Gamma(B^0 \to D^- \tau^+ \nu)}{\Gamma(B^0 \to D^- \mu^+ \nu)}$

Fisica del Charm CPV+Mixing $D^0 \rightarrow K_S^0 h^+ h^ D^0 \rightarrow h^+ h^- \pi^+ \pi^-$

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Possibilità di Tesi con Analisi Dati di LHCb

M. Calvi, M.Martinelli, D. Fazzini, J. Pardinas, S. Meloni, S. Capelli, E. Shields

Impatto diretto sulle analisi di LHCb Competenze sviluppate: Python/C++; ML

Possibilità di Tesi con R&D in LHCb

CMS in Bicocca

Analisi Dati

Vector Boson scattering $qq \rightarrow W^{\pm}W^{\mp}q'q' \quad HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$

Ricerca Doppio Higgs

Fisica del Flavour $\tau^+ \to \mu^+ \mu^- \mu^+$ $B^0 \to K^{*0} \mu^+ \mu^-$

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

UNIVERSIT

Possibilità di Tesi con Analisi Dati di CMS

F. Brivio, L. Guzzi, D. Zuolo

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

UNIVERS

Possibilità di Tesi con R&D in CMS

incrocio dei fasci (LHC: 30-50)

aggiungere la coordinata temporale per separare le collisioni

A. Benaglia, F. De Guio, A. Ghezzi, M. Malberti, T. Tabarelli

Attività in Bicocca

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Partecipazione allo sviluppo e messa in opera di un nuovo rivelatore

Possibilità di Tesi con R&D in CMS

M. Dinardo, P. Dini, S. Gennai, S. Malvezzi, D. Menasce, L. Moroni, D. Pedrini, F. Brivio, L. Guzzi, D. Zuolo

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

UNIVERS BIC

Conclusioni

Note

- Tutte le proposte di tesi del gruppo di particelle corrispondono allo stato dell'arte nei rispettivi ambiti
- I referenti in Bicocca ricoprono ruoli principali a livello internazionale nelle rispettive proposte
- Se qualcosa vi interessa, non esitate a contattarci per fare una chiaccherata!

https://www.fisica.unimib.it/it/ricerca/fisica-delle-particelle-e-delle-astroparticelle

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Approfondimenti

Maurizio Martinelli - Fisica degli Acceleratori in Bicocca | 24.03.2021

Scattering di bosoni vettori (VBS)

Misura della sezione d'urto electroweak

- uno dei processi più rari ad LHC
- sensibile a nuova fisica nel settore di Higgs
- qualunque deviazione dalle attese potrebbe essere indicazione di **Nuova** Fisica
- necessità di analisi dati avanzata per ricostruire gli eventi e separare segnale dai fondi
 - Machine Learning per identificare il segnale e scartare i fondi
- Bicocca coordina una rete mondiale di analisi sperimentali + previsioni teoriche su VBS!
- molte tesi sperimentali o fenomenologiche assegnate in passato sull'argomento: <u>http://govoni.web.cern.ch/govoni/tesi/#</u>

Per informazioni più dettagliate : <u>andrea.massironi@mib.infn.it</u>, pietro.govoni@unimib.it, marco.paganoni@unimib.it

 W^{\pm}

 W^{\pm}

- e <u>Vector Boson Fusion</u>

Fisica del sapore in CMS

Ricerca di fisica oltre il Modello Standard attraverso decadimenti rari a violazione di sapore leptonico

- Ricerca del segnale T → 3µ da Heavy Flavour, e.g Ds → TV, e da W
 → TV
- Impiego di tecniche di analisi multivariate per il riconoscimento del segnale

Analisi angolare del decadimento $B^0 \rightarrow K^{*0}\mu^+\mu^-$

- b→sll e` un esempio di Flavour Changing Neutral
 Current: transizione tra quark con la stessa carica elettrica
- Nel Modello Standard (SM) e` soppresso a tree-level
- Predizioni teoriche "beyond SM" disponibili → ideale per indagine indiretta di nuova fisica
- Analisi angolare permette di misurare grande numero di osservabili con incertezze teoriche ridotte
 Usiamo una GPU Nvidia Tesla per:
 - Studio angolare degli eventi di fondo (3D)
 - Studio angolare dell'efficienza di ricostruzione

Sviluppo di nuovi rivelatori a pixel ultraresistenti alla radiazione per la fase

ad alta luminosità di CMS

Upgrade ad alta luminosità di LHC -> intero rivelatore a pixel di Silicio di CMS deve essere sostituito con uno nuovo:

- resistenza alla radiazione: x10 superiore
- granularita`: x6 maggiore

I nuovi prototipi sviluppati, sia di tipo planare che 3D, sono estremamente promettenti -> dobbiamo caratterizzarli completamente nella loro versione finale tramite test su fascio e simulazioni per la scelta della tipologia da usare nell'esperimento

Perché ci serve un trigger?

- Ad LHC i fasci di protoni si scontrano 40x10⁶ di volte ogni secondo
 - Le sezioni d'urto di processi interessanti sono ordini di grandezza più piccole di quella di diffusione protone-protone
- Alla fine della selezione di trigger possiamo salvare in media circa 1000 eventi al secondo
 - Dobbiamo quindi andare a trovare il famoso ago nel pagliaio …
- E' necessario quindi sviluppare selezioni il più inclusive possibili

Capacita` richieste e acquisite

Capacità richieste

- Discreta conoscenza di C++ e del pacchetto ROOT (corso del terzo anno)
 - asset in più
- Conoscenza base della fisica delle particelle (corso del terzo anno)

Capacità acquisite

- **Programmazione avanzata in** C++ e Python
- Uso di varie tecniche di ML
 - Sia unsupervised che semi-supervised
- Introduzione all'analisi dei dati
- Introduzione all'esperimento CMS

• Conoscenze di base di Machine Learning (ML) e Python rappresentano un

High-Lumi LHC: $L_{inst} = 7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ 140-200 collisioni, quasi simultanee, per ogni incrocio dei fasci (pileup), sovrapposte nel rivelatore

Nuovo paradigma: distinguere le diverse collisioni misurando con estrema accuratezza il tempo di produzione delle particelle

Utilizzare l'informazione temporale per una ricostruzione 4D delle collisioni, riducendo le sovrapposizioni nella ricostruzione 3D

Upgrade del rivelatore CMS: un nuovo rivelatore per misure temporali (MTD)

Spazio

Rivelatore MTD: cristalli scintillatori (LYSO) letti con fotorivelatori al silicio (SiPM)

166k cristalli, area ~ 40 m²

Ruolo centrale di Milano-Bicocca nell'ideazione e nella costruzione del rivelatore

Test e allestimento del rivelatore MTD presso i laboratori in U2

Occasione per partecipare allo sviluppo e messa in opera di un nuovo rivelatore per CMS, dopo un decennio di funzionamento a LHC!

Possibilità di tesi strumentali presso i laboratori in U2 e analisi dati di test su fascio

Per informazioni più dettagliate : andrea.benaglia@mib.infn.it, federico.deguio@unimib.it, alessio.ghezzi@unimib.it, martina.malberti@mib.infn.it, tommaso.tabarelli@unimib.it

