

### Heat load review Methodology

P. Zijm, V. Gahier and S. Claudet on behalf of WP9

https://indico.cern.ch/event/1019569/ EDMS 2560556 CERN, 27/04/2021



# Content

- Introduction and Terminology
  - Hilumi machine configuration
  - Heat load classification and deposition
  - Design coefficients
- Hilumi heat load methodology
  - Static
  - Dynamic
  - Heat load database
- Conclusions
- Overview



### **Hilumi Machine configuration P1/P5**



The variety of Users/ Components required a homogeneous and systematic methodology to guide towards the design of Refrigerator.

IΡ



Machine configuration mirrored around Interaction Point (IP)

## Breakdown of heat load by type

### Determining refrigerator capacity

- Static
  - Heat-In leaks
- Resistive

### Beam Induced

- Synchrotron radiation
  - Marginal for HL-LHC
- Image current
  - Electron cloud
  - Beam Scattering
    - Only if degradation of vacuum
- Collision induced
- Radio frequency induced
  - (Crab cavities)

### Not determining

- Cooldown
- Magnet induced
  - Ramp-up / ramp-down
  - Magnet Quench

### Pulse induced

Dynamic

heat loads

### Heat load mechanisms

Static  $\rightarrow$  occurs at any time with the same magnitude

Magnetic (AC losses) → occurs only during current ramp-up and ramp-downSpecific load 5.1 W/mMagnetic length at cold → 31.1 m

Resistive  $\rightarrow$  goes with the square of current intensity in spliceSplices resistance  $\rightarrow$  1 n $\Omega$ Local powering current leads

Beam induced  $\rightarrow$  occurs as long as the **beam is circulating** Assumed linear with injection  $\rightarrow$  17 min Beam dump assumed instantaneous

Collision induced→ suddenly occurs when particles collide Initial regime: instantaneous Time to max collisions: tbd.



### Hilumi heat deposition Magnet schematic - cross view





# **Terminology and heat loads margins definition**

Name & Definition

Static heat load:  $Q_{static}$ Raw static heat load from calculation or measurement without contingency.

**Dynamic heat load:**  $Q_{dynamic}$ Raw dynamic heat load from calculation or simulation without contingency.

**Design heat load:** *Q*<sub>design</sub> Heat load including uncertainty and overcapacity margin

Installed local cooling capacity : Capacity that is installed at the user interface



#### Uncertainty factor ( $F_{un}$ )

Evolved during the project lifetime. On static heat loads only.

To cover:

- uncertainty in the design (material, installation...)
- Engineering change
- Tolerances
- Room for growth

Uncertainty factor evolves with maturity of design.



#### Overcapacity factor ( $F_{ov}$ ) On static + dynamic.

To ensure nominal performance by covering the risk; for example reduced performance, uncertainty due to modelling.

# No margin taken on Ultimate Conditions.



# **Design heat load (Local)**

General approach "inspired from LHC project note 140" :



### **Dynamic Operational parameters From Nominal to Ultimate dynamic heat loads**

Nominal conditions as well as Ultimate Luminosity and Ultimate energy are considered for the heat load review



|               |                                  | Luminosity | Energy  |  |  |
|---------------|----------------------------------|------------|---------|--|--|
| $\rightarrow$ | Nominal                          | 5 L0       | 7 TeV   |  |  |
|               | Ultimate                         | 7.5 L0     | 7.5 TeV |  |  |
|               | $* 1.0 = 10^{34} \text{Hz/cm}^2$ |            |         |  |  |

- ➤ Dynamic heat loads are provided by WP2 (beam induced heat loads) and by WP10 (collision induced) for given beam parameters and Luminosity. → Scaling factors were required for resistive and collision induced heat loads.
- The change in beam induced heat loads between Ultimate and Nominal conditions is assumed negligible.

|           | Luminosity | Energy              | - |              | Scaling<br>factor |
|-----------|------------|---------------------|---|--------------|-------------------|
| Resistive | -          | E <sup>2</sup>      |   | Resistive    | 1.15              |
| Collision | L          | 15% from 7→ 7.5 TeV |   | Beam induced | 1.00              |
|           |            |                     | - | Collision    | 1.72              |



# Content

- Introduction term..
  - Hilumi machine configuration
  - Heat load classification and deposition
  - Design coefficients
- Hilumi heat load assessment methodology
  - Static
  - Dynamic
  - Heat load database
- Conclusions
- Overview



### Hilumi static heat load methodology



11

# Hilumi dynamic heat load methodology



## **Heat load repository**





13

## Conclusions

- Methodology to define the design heat loads for each user has been applied.
  - Static heat loads

CÉRN

- Exhaustive breakdown approach performed
- Dynamic heat loads
  - Beam/Collision induced heat loads provided by WP2/WP10 Simulations
- Systematic approach to margin uncertainty/ overcapacity
- Solid repository compiling all inputs to validate heat loads and temperature levels for each user.



### Global overview of heat loads (4.5 K equivalent)

In addition to the methodology an introduction to the users to come





### Thanks for your time and answers



P. Zijm, V. Gahier - TE-CRG