

Heat load review Summary table / refrigeration requirement

V. Gahier on behalf of WP9 EDMS 2560557 https://indico.cern.ch/event/1023016/

CERN, 27/04/2021

- 1. Introduction : HL- LHC Cryogenic upgrade
- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads
- 4. Cooling capacity at 60/80 K
 - Users requirements
 - Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

1. HL- LHC Cryogenic upgrade

P1-P5: 2 new cryoplants (~15 kW @ 4.5 K incl. ~3 kW @ 1.8 K) and 2 x 750m cryodistribution for high-luminosity insertions

P4: upgrade (+2 kW @ 4.5 K) of an existing LHC 18 kW @ 4.5K cryoplant

SPS-BA6: SRF test facility with beam primarily for Crab-Cavities

Other test facilities related activities not reported here

1. Introduction : HL- LHC Cryogenic upgrade

- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads
- 4. Cooling capacity at 60/80 K
 - Users requirements
 - Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

2. P1/P5 Cryogenic architecture

Block Flow Diagram from E. Monneret

2. P1/P5 Cryogenic architecture : Refrigerator Scope of supply

In order to **define the Refrigerator**, the helium **mass flow rate, pressure and temperature** shall be known at the different process points in order to fulfill the heat loaf at user level. This shall take into account the distribution system (QXL and valving system)

2. P1/P5 Cryogenic architecture : From Users needs to Refrigerator Supply (1/2)

2. P1/P5 Cryogenic architecture : From Users needs to Refrigerator Supply (2/2)

- The sum of installed local capacity (at users level) is higher than the refrigeration global capacity (at the refrigerator level).
- For magnets (IT+D1 and D2), the maximum of {Nominal considering overcapacity or Ultimate} has been considered for the Refrigerator design.
- For Cold Powering or Crab Cavities, reduced performance of some components have been considered with the overcapacity factor at 1.5 on the Nominal case to cover in particular :
 - Degraded SC link cryostat performance
 - Degraded crab cavity quality
- For **60/80K level and 4.5-20 K**, the sum of installed local capacities can be considered since they account for less than 10% of the refrigerator capacity.

1. Introduction : HL- LHC Cryogenic upgrade

- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads
- 4. Cooling capacity at 60/80 K
 - Users requirements
 - Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

3. Distribution system QXL (cryogenic distribution line) heat loads – Example of IP5

3. Distribution system Service Module Heat loads at 1.9 K

1. Introduction : HL- LHC Cryogenic upgrade

- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads

4. Cooling capacity at 60/80 K

- Users requirements
- Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

4. Cooling capacity at 60/80 K

4. Cooling capacity at 60/80 K Line E/F design conditions at Refrigerator Interface

IL-LHC PROJE

1. Introduction : HL- LHC Cryogenic upgrade

- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads
- 4. Cooling capacity at 60/80 K
 - Users requirements
 - Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

5. Cooling capacity from supercritical helium

Total Parasitic (Distribution)				
Cooling capacity for Refrigerator design	Raw	Raw x F _{un}		
Line C supply	75 W	113 W		
Line D return	75 W	113 W		
Line B return	150 W	225 W		

User Requirement for one LSS (from previous talks)

Cooling capacity for Refrigerator design	CC 1	CC 2	D2	IT Cold Pow.	IT Cold Pow.	IT + D1	Total for one LSS
1.9 K	68 W	68 W	74 W	-	-	1330 W	1540 W
4.5 – 20 K	40 W	40 W	125 W	-	-	-	205 W
4.5 – 293 K	-	-	-	8.4 g/s	3.8 g/s	-	12.2 g/s

5. Cooling capacity from Supercritical helium Specific example of Loads at 1.9 K

- In order to avoid non-necessary overdesign leading to difficulty in operability and design of cold compressor, the installed local capacity is not taken into account for Cold Compressor and Refrigerator design.
- Cold compressor design flow rate range between 154 g/s and 174 g/s. Transient from collisions heat induced loads to be considered in Cold compressor design as well (not covered in this review).

	Luminosity [L0 = 10 ³⁴ Hz/cm ²]	Energy [TeV]	CC mass flow (g/s)
Sum of Installed local capacities	-	-	185
Nominal * Fov	5 L0	7.5	174
Ultimate L – Ultimate E	7.5 L0	7.5	171
Ultimate L	7.5 L0	7	154
Run 3 equivalent	2 L0	7	76

1. Introduction : HL- LHC Cryogenic upgrade

- 2. HL-LHC Cryogenic architecture
 - P1/P5 Cryogenic architecture
 - Refrigerator Scope of supply
 - From Users needs to Refrigerator supply
- 3. Distribution system
 - QXL (cryogenic distribution line) heat loads Example of IP5
 - Service Module Heat loads
- 4. Cooling capacity at 60/80 K
 - Users requirements
 - Cooling capacity for User
- 5. Cooling capacity from Supercritical helium
 - Users requirements
 - Cooling capacity for User
- 6. Refrigerator design capacity and conclusions

6. Refrigerator summary

At refrigerator level Unit		Line E \rightarrow F Thermal shield +	Line C→ D Beam Screen	Line C→ B	Line C→ WRL
		Beam screen	4.5-20 K	1.9 K loads	Liquefaction
Temperature level	К	60-80	4.5-20	1.9	4.5-293
Total design heat loads	(W)	10600	425	3305	-
User design heat loads	(W)	7160	330	3080	-
Parasitic heat loads	(VV)	3435	115	225	-
RM/JM flow	(g/s)	4	4	8	-
T in	(K)	60	4.76	4.76	4.76
T out	(K)	81	20	3.6	293
P in	(bar)	22	4.15	4.15	4.15
P out	(bar)	20	1.3	0.015	1.1
Total design flow	(g/s)	96	8.1	173	24.4
Equivalent @ 4.5 K	kW	0.74	0.21	10.58	3.05

> One refrigerator shall be designed for **14.6 kW** equivalent at 4.5 K.

6. Conclusion

- Users heat loads requirements needs now to be frozen.
- Refrigerator is mostly defined by the load at 1.9 K for the IT+D1. Detailed evaluation has been performed for IT static heat loads taking into account the maturity of design.
- Margin considered for the refrigerator seems reasonable to us :
 - Ultimate luminosity and energy case is covered;
 - Nominal case with overcapacity factor of 150% is covered;
 - Potential performances degradation of material is considered.
- ⇒ Based on the outcome of the review →Final tuning of the required capacity for the refrigerator will be decided for Refrigerator IT.

Thanks for your time and questions

Thanks for your time and questions

Cool down and Quench Case

Assumptions

Momentum flow across magnets in LHC = momentum flow across magnets in HL-LHC

Equivalent diameter for LHC magnets = equivalent diameter for HL-LHC magnets = 50 mm

IT max mass flow (HL-LHC) is ascribable to a standard cell max mass flow (LHC baseline) \rightarrow 100 g/s

SUMMARY TABLE					
Branch Normal Fast* Special					
Dranch	cool down [g/s]	cool down [g/s]	cool down [g/s]		
LSS.L+R	120	120	120		
LSS.L	60	120	120		
Inner Triplet	36**	72**	100 §		
SAMs	24	48	20†		

* Fast => total mass flow for one side
** IT magnet length ~ 60% of LSS
* IT mass flow in special case ~ 85% of LSS
† prevision of 5 g/s per each SAM in special case

	HL-LHC (LSS.R5 $+$ L5)	LHC (generic sector)
Cool down mode	Normal / Fast	Normal / Fast
Mass to be cooled [tons]	350 / 175	4600
Supply headers [-]	С	C, E, F
Return headers [-]	D	D
Max ∆T supply – return [K]	150	150
Max ΔT per magnet [K]	50	75
Cooling power [kW]	~ 90	600 / 1200
He mass flow [g/s]	120	770 / 1540
Cooling time [days]	~ 6 / 11	7 / 14

Due to the required cooling power, the cooldown case will not be a designing case for the Refrigerator and will be covered by the equipment in place.

Quench (at ~40 MJ) will not be designing either the Refrigerator.

Due to the mass to cooldown for HL-LHC : cooldown is forecast in 7-10 days to 80 K, 2-3 weeks to 1.9 K.

3. Distribution system QXL (cryogenic distribution line)– Example of IP5

LHC PROJEC

24

5. Cooling capacity from Supercritical helium Users requirement at 1.9 K

Cooling rqt at 1.9 K	CC 1	CC 2	D2	IT + D1	Total for one LSS
Installed local capacity	80 W	80 W	80 W	1400 W	1640 W
Design static (with uncertainty margin)	24 W	24 W	29 W	220 W	297 W
Nominal (5 L0, 7 TeV) with overcapacity (static design + nominal dynamic + overcapacity)	68 W*	68 W*	75 W	1330 W	1540 W
Ultimate (7.5 L0, 7.5 TeV) (static design + ultimate dynamic)	45 W**	45 W**	60 W	1330 W	1480 W

* Considering an average cavity quality

** 82 W for Exceptional case, expected 45W at 3.4 MV cavity voltage

→ Nominal case with overcapacity considered for Refrigerator Design

IP

5. Conversion factor for Sub-atmospheric heat exchanger

- Conversion factor increase with line C pressure decrease due to the vapor content after flash
- Conversion factor taken conservatively at 18.5 J/g

5. Cooling capacity from Supercritical helium User requirement 4.5K - 293 K

D2 CC DFx DCM D1 CP Q3 Q2b Q2a DFм DSH DSH QI DSH to DFHM to DFHX

Cooling rqt at 4.5 K-293 K	DFM	DFX
Installed local capacity	5 g/s	10 g/s
Nominal with overcapacity (static design + nominal dynamic + overcapacity)	3.8 g/s	8.4 g/s
Design Static	2.5 g/s	3.1 g/s

Refer to Cold Powering Heat Loads talk.

IP

For Refrigerator Design, Nominal with Overcapacity will be considered

5. Cooling capacity from Supercritical helium User requirement at 4.5K - 20 K (beam screen)

IP

→ Installed local capacity considered for Refrigerator Design

5. Definition of design steady mode for cold compressor

Design steady state is defined the maximum of :

- Heat loads at Ultimate Conditions (7.5 L0; 7.5 TeV)
- Heat loads at Nominal Conditions (7.5 L0; 7.5 TeV) with Overcapacity margin
- Design steady state was taken at 150 g/s for the process and feasibility study of Industrial – with an overshoot of +30 g/s → 180 g/s

Natural turndown is at 30%. It is important to not overdesign the cold compressors otherwise heating for flow generation or recycling will be required to run the compressors.

Furthermore Wheel diameter / flow design may be challenging. LHC was designed for 130 g/s at 15 mbar.

5. Impact of collision pulsed loads : Consequences on Cold Compressor box

Cold compressor flow for a Typical fill

- Collision induced heat loads are instantaneous and scale with Luminosity. In order to handle those high transients, it is considered a pre-load of 40 % in the cold mass. As a back up plan, pre-loading in RM/JM is considered.
- Cold compressors (CC) is a serie of centrifugal machines with a maximum acceleration/decceleration considered at 7.0 g/s/min.
- Natural turndown is considered to 30% of maximum compressor capacity.
- To cover this dynamic effect and subsequent overshoot, the cold compressor has a maximum capacity of **+30 g/s** compared with the design steady mode.

