Automating Awkward Array Testing

R Santam Roy Choudhury

(National Institute of Technology, Durgapur)

The Different Layers in Awkward Array

ak.Array in Python

I

C++ Classes

/

N\

CPU Kernel

The one we interact with

Data Navigation

Operates on CPU Pointers

CUDA Kernel

Operates on GPU Pointers

The Current Testing Infrastructure

Creates a python kernel
from the kernel specs
and generates the tests _
Auto generated

Not a real kernel. Just a
generated specification.

\

Function
Definition

‘ DURGAPUR .’

A Python Kernel Test

test pyawkward BitMaskedArray to ByteMaskedArray 1():

tobytemask = [123, 123, 123, 123, 123, 123, 123, 123, 123,

123, 123,123, 123, 123, 123}

frombitmask = [1, 1, 1, 1, 1]

bitmasklength = 3

validwhen

1sb order

funcPy = getattr(ke s, 'awkward B askedArray to B MaskedArray')

funcPy(tobytemask=tobytemask, frombitmask=frombitmask, bitmasklength=bitmasklength, validwhen=validwhen, 1sb order=1sb order)
pytest tobytemask = [False, True, >, True, True, True, True, True, False, True, True, T , True, e, True, T » F e,
T T e, T ,," :,*, : o, T]

assert tobytemask|[:len(pytest tobytemask pytest.approx(pytest tobytemask)

’

Result got from kernel Result we are expecting

Does it cover all of the test cases?

NO

What are some of the loopholes here?

e Not too many specific test cases
e Not testing for specific errors
e Theroles of the arguments are not well defined

What is a good solution to fill up the gap?

Property based Testing

What is property based testing?

A type of test in which we define the properties
of the input and the output that we are expecting

What is the advantage of having property
based tests?

More hard coded input datas to test with
Test a larger section of the codebase
Very little code

More efficient

Flexible

Hypothesis Library

- A boon to property based testing

Various strategies to get constraints based data
Get a more elaborative test result

Regenerate failing test inputs

Shrinking

And much more..

How a unit test runs

Input Data —) Perform an operation — Assert the result

How a tests written using hypothesis runs

Input Data based

on some — Perform an operation — Assert the result

constraints

A sample unit test

sum of numbers(number 1, number 2):
return number 1 + number 2

test verify sum of numbers():

issert sum of numbers(2, 3) == 5

sum of numbers(number 1, number 2):
"eturn number 1 + number 2

@settings(verbosity=Verb Y. VE e, max examples=500)
@glven(trategy 1ntegers(m1n valu , max value=20), strategy.integers(min value=5, max value=100))
f testwverlfyisumﬁof”numbets(numberil, number 2):
t sum of numbers(number 1, number 2) == number 1 + number 2

The CPU Kernel Function The Python Kernel
will come here Function will come here

Let's Run It

test_property.py::test verify_sum_of_numbers:

- during reuse phase (0.00 seconds):
- Typical runtimes: ~ 1ms, ~ 37% in data generation
- 1 passing examples, 0 failing examples, 0 invalid examples

- during generate phase (1.30 seconds):
- Typical runtimes: ~ 1ms, ~ 38% in data generation
- 499 passing examples, 0 failing examples, © invalid examples

- Stopped because settings.max_examples=500

s

The Approach

LW Jenerate-strategy-tests.py — Python Kernel
Tests and expected outputs

Testing with the data / \ Testing with the data
@ C kernel functions Python kernel functions

An overview

Unit tests may leave some corner cases untested which can be found

out using property based test.
The awkward array creates a python kernel which is a specification used

to auto generating tests.
The hypothesis library can be used to get a well documented result of

test cases.

Some resources

Hypothesis- https://hypothesis.readthedocs.io/en/latest/index.html#

Awkward Array- https://github.com/scikit-hep/awkward-1.0

The Kernel Specification-
https://github.com/scikit-hep/awkward-1.0/blob/main/kernel-specification.yml

The generate tests script-
https://github.com/SantamRC/awkward-1.0/blob/main/dev/generate-tests.py

https://hypothesis.readthedocs.io/en/latest/index.html#
https://github.com/scikit-hep/awkward-1.0
https://github.com/scikit-hep/awkward-1.0/blob/main/kernel-specification.yml
https://github.com/SantamRC/awkward-1.0/blob/main/dev/generate-tests.py

A Special Mention to Jim Pivarski and lanna Osborne

hank Youl!!

O https://github.com/SantamRC

M santamdev404@gmail.com

mailto:santamdev404@gmail.com
https://github.com/SantamRC

