
Muon tag-and-probe
efficiencies with Apache Spark

and Parquet
Andre Frankenthal (Princeton) for the Muon Physics Object Group

on behalf of the CMS Collaboration

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 1

• Efficiencies are a key part of any experimental physics program
§ Object reconstruction (“Can we reconstruct this muon?”)
§ Identification (“How likely are we to identify this muon?”)
§ Trigger (“Does this muon trigger the event?”)
§ Isolation (“Is this muon isolated from other activity in the event?”)

• Many aspects of physics analyses rely predominantly on simulations, so it is
crucial to ensure their validity and understand their limitations
§ Simulation can’t capture every single detector misbehavior
§ Other physics activity in the event can unexpectedly degrade performance
§ Additional unaccounted phenomena can affect efficiencies

• Measuring discrepancy between efficiency in data and simulated efficiency
is critical for obtaining correct representation of physics in play
§ These “scale factors” correct our expectation and improve the accuracy of our

measurements
§ They are in essence a calibration between expected and observed performance

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 2

Why efficiencies?

• In colliders, a common way of computing
scale factors is via the tag-and-probe (T&P)
method

• CMS mainly uses Z and J/Ѱ resonances to
compute efficiencies in data and in
simulation, and derive scale factors from
the discrepancy

• A role of the Muon Physics Object Group
(POG) is to provide official and
comprehensive efficiency recommendations
for CMS analyses

§ Highest precision achievable
§ Covering broadest phase space possible

• Deriving corrections is fastidious work and
without performant code it would take
several days to produce baseline scale
factors

§ Quick turnaround time is also critical for
commissioning new data as it streams in

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 3

Scale factors with tag-and-probe in CMS

Tag muon

Probe track (no specific
muon requirement yet)

p p à (Z à μ+μ-) + jets

Tag & Probe
1. Ensure robust tag muon and dimuon pair selection to select signal
2. Apply minimum pre-selections to probe track (enough to ensure

reliable sample of Z à μ+μ- candidates)
3. Check if probe satisfies selection under test and compute efficiency

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 4

Sketch of a cut-and-count T&P computation

Sample in data collected
with single-muon triggers

MC sample of Z à μ+μ-

events passing the triggers

Apply very loose selection to
store flat ntuples with

possible tag-probe pairs
(“skimming”)

Bin passing and failing probes in bins of
dimuon invariant massApply:

1. Pre-selection to tag,
probe, and/or event

2. Baseline selection to
probe (“denominator”)

3. Test selection to probe
(may pass or fail)
(“numerator”)

Passing Z probes (“pass”) Failing Z probes (“fail”)

Efficiency:
pass / (pass + fail)

“cut” then “count”
(or fit spectra)

Passing Z probes in data
Failing Z probes in data

Passing Z probes in MC
Failing Z probes in MC

Bin in pT,
rapidity, etc.

Sample with event content

𝑚𝜇𝜇 𝑚𝜇𝜇91 GeV 91 GeV

Efficiency in
data

Efficiency in
MC

Scale factor!

flexibility reusability A.M
. Sirunyan

et al 2018 JIN
ST 13 P06015

• In practice, the general muon efficiency of an
analysis is factorized:

• Several combinations of efficiencies supported:

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 5

Efficiency factorization and the need for speed
Probe track

Pass identification

Pass isolation

Pass trigger
✏ = ✏trk ⇥ ✏ID|trk ⇥ ✏iso|ID ⇥ ✏trig|iso

<latexit sha1_base64="wFmnUWOVDBaKpzTSNcbiN/rc0/U=">AAAC8nichVFNaxsxENVu+pG6X2567EXUBHoyuyWhvRRCk0J7S6FOAl5jtPLYEauVFmk21Cj6I7mFXPuHeuof6aFa203i2JABwePNvJk3o7ySwmKS/I7ijQcPHz3efNJ6+uz5i5ftV1tHVteGQ49rqc1JzixIoaCHAiWcVAZYmUs4zov9Jn98BsYKrX7gtIJBySZKjAVnGKhh+08GlRVSK/qJumzWzxkY+f/00GUlw1NTOjSF955mKEqw17XaMDWBNeXfDvz5PVIpztYphdU30tBmVZnLep0QjZjcKJs23g/bnaSbzIKugnQBOmQRh8P232ykeV2CQi6Ztf00qXDgmEHBJfhWVluoGC/YBPoBKhaMDdzMl6fbgRnRsTbhKaQz9rbCsdLaaZmHysalvZtryHW5fo3jjwMnVFUjKD4fNK4lRU2bX6UjYYCjnAbAuBHBK+WnzDCO4e+XpuRaF8hyu7SJ+zlfoBXOld49zio4et9Nd7q733c6e58Xh9skb8hb8o6k5APZI1/JIekRHn2JigijOsb4Ir6Mr+alcbTQvCZLEf/6B7g3+ro=</latexit>

Identification

LooseID

MediumID

MediumPromptID

TightID

SoftID

HighPtID

TrkHighPtID

DisplacedID

Isolation

LooseIso

TightIso

LooseTrkIso

TightTrkIso

Trigger

Isolated muon triggers

Muon triggers

Displaced mu triggers

• For each efficiency, several systematic
variations are studied
§ An extra factor of 10 in the number of

computations neededMore than 20 possible combinations!

Estimated total number of fits:
About 10,000

• Over the past year, a new T&P framework, spark_tnp, has been
developed by the Muon POG, originally written by Devin Taylor
§ Leverages CERN’s Apache Spark cluster (“analytix”) for computing efficiencies
§ Columnar data format (Apache Parquet) to efficiently interface with Spark
§ Managed to reduce scale factor computation time from days to minutes
§ Framework made available to CMS analyzers as well

- Several groups have used spark_tnp to compute custom selection efficiencies
- We have offered (and will continue to offer) training workshops for users

• Goal today is to display convenience and speed of scale factor
calculation, and make framework/technique available to the wider
HEP community
§ Codebase is now public at: https://gitlab.cern.ch/cms-muonPOG/spark_tnp

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 6

Our new package: spark_tnp

https://gitlab.cern.ch/cms-muonPOG/spark_tnp

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 7

Scale factor software workflow

CMS full event
content

Ntuplizer/skimmer
(tags & probes)

Flat ROOT
trees

(in EOS)

ROOT to Parquet
converter

Parquet
columns
(in HDFS)

Spark
cluster

condor

SF and eff.
plots + files
(webpage)

Plotter

Fitter (or C&C)

Aggregator

spark_tnp EOS: CERN distributed storage
HDFS: Hadoop filesystem at CERN
Green: data files
Blue: software modules
Yellow: clusters

Flat ROOT
trees

(in HDFS)

(uses Laurelin)

https://github.com/spark-root/laurelin

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 8

Matching the physics and the software

Spark
cluster

condor

SF and eff.
plots + files
(webpage)

Plotter

Fitter (or C&C)

Aggregator

Parquet
columns
(in HDFS)

Passing probes (“pass”) Failing probes (“fail”)

𝑚𝜇𝜇 𝑚𝜇𝜇91 GeV 91 GeV

A.M
. Sirunyan

et al2020
JIN

ST
15

P02027

Flat Parquet
ntuple with
candidate T&P
pairs

𝑚𝜇𝜇91 GeV

(see backup for fit)

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 9

spark_tnp speedup

1 night for
single ID (1
lxplus core)

12 hours
for all IDs,
(16 Spark
cores)

1 hour
(~100 Spark
cores)

Pure ROOT-
based T&P

Spark with
ROOT files
via Laurelin

Spark with
converted
Parquet
files

Devin Taylor

https://github.com/spark-root/laurelin

• Two modes available, with similar
underlying backend
• They also use the same configuration file
• Jupyter & Spark integrated into CERN’s
SWAN environment

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 10

User modes: script vs. notebook

Jupyter notebooks (exploratory work)

Command-line interface (official production)

SWAN: Service for Web based ANalysis

TODAY!

Modules

https://swan.web.cern.ch/swan/

Scale factor demo
Let’s move over to notebook!

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 11

The “Pivarski scale” of talk interactivity:
1. Pre-evaluated deck of slides
2. Watching cells being evaluated
3. Ask everyone to press shift+Enter with you
4. “What if I change something?”
5. Formal exercises in the talk

We are here today (CERN
SWAN/analytix access needed)

7/5/21 Tag-and-probe with Spark | A. Frankenthal | PyHEP 2021 12

Extra: sketch of fitting (official) computation

Apply very loose selection to
store flat ntuples with

possible tag-probe pairs
(“skimming”)

Bin passing and failing probes in bins of
dimuon invariant massApply:

1. Pre-selection to tag,
probe, and/or event

2. Baseline selection to
probe (“denominator”)

3. Test selection to probe
(may pass or fail)
(“numerator”)

Passing Z probes (“pass”) Failing Z probes (“fail”)

Efficiency:

fit spectra
to a signal plus

background
functions

Sample with event content

𝑚𝜇𝜇 𝑚𝜇𝜇91 GeV 91 GeV

Efficiency in
data

Efficiency in
MC

Npass = fs(~p) N
s
pass + fb(~q) N

b
pass

Nfail = fs(~p) N
s
fail + fb(~q) N

b
fail

<latexit sha1_base64="3erL3hoAchFQtnf4FQ86a7V5/LI=">AAACwXichZFdS8MwFIbT+j2/pl56ExzKRBitKAoiDHfj1VBwH7DOkmSphqVNTFJhlP45/4X/wJ9htvXCOWUHAi/vecJ7OAdLzrTxvE/HXVpeWV1b3yhtbm3v7Jb39ttapIrQFhFcqC5GmnKW0JZhhtOuVBTFmNMOHjbG/c47VZqJ5MmMJO3H6CVhESPIWCssfzTDLIiReVVxJpHWeQ5PbmEU6mrwTkkm81MY3MA56FnDM0thOMXe/sMwDILSDztCjC+MmEILIwoMh+WKV/MmBeeFX4gKKOohLH8FA0HSmCaGcDtnz/ek6WdIGUY4zUtBqqlEZIheaM/KBMVU97PJrnN4bJ0BjISyLzFw4v78kaFY61GMLTmeU//ujc2/er3URNf9jCUyNTQh06Ao5dAIOD4cHDBFieEjKxBRzM4KyStSiBh73pkULMTQIKzzkl2N/3sR86J9XvMvapePF5X6XbGkdXAIjkAV+OAK1ME9eAAtQJyq03Q6TtdtuMyVrpqirlP8OQAz5WbfmenbbQ==</latexit>

Ns
pass

Ns
pass +Ns

fail

<latexit sha1_base64="60nUdbnHfPGKW3MModu93nD0BAo=">AAACRHicbVDLSsNAFJ34rPUVdelmsAiCUBKp6LIogiupYB/QxDCZTtqhk0yYmQgl5Iv8D/cu1R9w4U7cipM2C/s4MHA499zHHD9mVCrLejOWlldW19ZLG+XNre2dXXNvvyV5IjBpYs646PhIEkYj0lRUMdKJBUGhz0jbH17n9fYTEZLy6EGNYuKGqB/RgGKktOSZN04gEE7vHqWXOiFSAxGmMZIyy7JFIjyFU2qAKNNWz6xYVWsMOE/sglRAgYZnfjo9jpOQRAozPblrW7FyUyQUxYxkZSeRJEZ4iPqkq2mEQiLddPzdDB5rpQcDLvSLFByr/ztSFEo5Cn3tzM+Us7VcXFTrJiq4dFMaxYkiEZ4sChIGFYd5drBHBcGKjTRBWFB9K8QDpPNTOuGpLT7nQ4V8mZV1NPZsEPOkdVa1a9Xz+1qlflWEVAKH4AicABtcgDq4BQ3QBBg8g1fwDj6MF+PL+DZ+JtYlo+g5AFMwfv8ASD21Cw==</latexit>

fs: fitting function for signal shape
fb: fitting function for background shape

Fitting helps to
separate signal and
background

Bin in pT,
rapidity, etc.

A.M
. Sirunyan

et al 2018 JIN
ST 13 P06015

Scale factor!

