

Muon tag-and-probe efficiencies with Apache Spark and Parquet

Andre Frankenthal (Princeton) for the Muon Physics Object Group on behalf of the CMS Collaboration

Why efficiencies?

- Efficiencies are a key part of any experimental physics program
 - Object reconstruction ("Can we reconstruct this muon?")
 - Identification ("How likely are we to identify this muon?")
 - Trigger ("Does this muon trigger the event?")
 - Isolation ("Is this muon isolated from other activity in the event?")
- Many aspects of physics analyses rely predominantly on simulations, so it is crucial to ensure their validity and understand their limitations
 - Simulation can't capture every single detector misbehavior
 - Other physics activity in the event can unexpectedly degrade performance
 - Additional unaccounted phenomena can affect efficiencies
- Measuring discrepancy between efficiency in data and simulated efficiency is critical for obtaining correct representation of physics in play
 - These "scale factors" correct our expectation and improve the accuracy of our measurements
 - They are in essence a calibration between expected and observed performance

Scale factors with tag-and-probe in CMS

- In colliders, a common way of computing scale factors is via the tag-and-probe (T&P) method
- CMS mainly uses Z and J/Ψ resonances to compute efficiencies in data and in simulation, and derive scale factors from the discrepancy
- A role of the Muon Physics Object Group (POG) is to provide official and comprehensive efficiency recommendations for CMS analyses
 - Highest precision achievable
 - Covering broadest phase space possible
- Deriving corrections is fastidious work and without performant code it would take several days to produce baseline scale factors
 - Quick turnaround time is also critical for commissioning new data as it streams in

Tag & Probe

- 1. Ensure robust tag muon and dimuon pair selection to select signal
- 2. Apply **minimum pre-selections to probe track** (enough to ensure reliable sample of $Z \rightarrow \mu^+\mu^-$ candidates)
- 3. Check **if probe satisfies selection under test** and compute efficiency

Sketch of a cut-and-count T&P computation

Efficiency factorization and the need for speed

5

In practice, the general muon efficiency of an analysis is factorized:

 $\epsilon = \epsilon_{\rm trk} \times \epsilon_{\rm ID|trk} \times \epsilon_{\rm iso|ID} \times \epsilon_{\rm trig|iso}$

Several combinations of efficiencies supported:

dentification	Isolation		Trigger	
ooseID	Looselso		Isolated muon triggers	
VediumID	TightIso		Muon triggers	Estimated total number of fits:
MediumPromptID	LooseTrkIso		Displaced mu triggers	About 10,000
ГightID	TightTrkIso			
SoftID		-	 For each eff 	iciency, several systematic
HighPtID			 variations are studied An extra factor of 10 in the number of 	
[rkHighPtID				
DisplacedID	More than 20 possible combinations!		computations needed	

- Over the past year, a new T&P framework, *spark_tnp*, has been developed by the Muon POG, originally written by Devin Taylor
 - Leverages CERN's Apache Spark cluster ("analytix") for computing efficiencies
 - Columnar data format (Apache Parquet) to efficiently interface with Spark
 - Managed to reduce scale factor computation time from days to minutes
 - Framework made available to CMS analyzers as well
 - Several groups have used *spark_tnp* to compute custom selection efficiencies
 - We have offered (and will continue to offer) training workshops for users
- Goal today is to display convenience and speed of scale factor calculation, and make framework/technique available to the wider HEP community
 - Codebase is now public at: <u>https://gitlab.cern.ch/cms-muonPOG/spark_tnp</u>

Scale factor software workflow

Matching the physics and the software

spark_tnp speedup

User modes: script vs. notebook

- Two modes available, with similar underlying backend
- They also use the same configuration file
- Jupyter & Spark integrated into CERN's SWAN environment

SWAN: Service for Web based ANalysis

Command-line interface (official production)

The "Pivarski scale" of talk interactivity:

- 1. Pre-evaluated deck of slides
- 2. Watching cells being evaluated
- 3. Ask everyone to press shift+Enter with you
- 4. "What if I change something?"
- 5. Formal exercises in the talk

We are here today (CERN *SWAN/analytix* access needed)

Scale factor demo Let's move over to notebook!

Extra: sketch of fitting (official) computation

