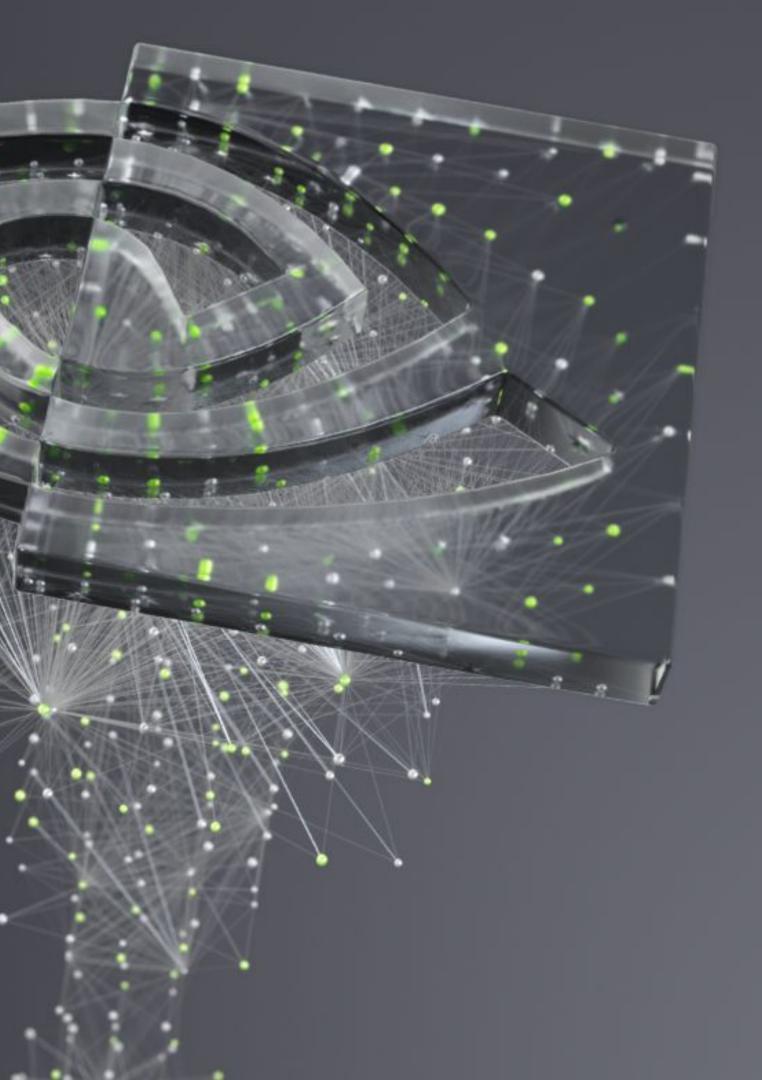


Intro to RAPIDS: Pyhep 2021

Benjamin Zaitlen

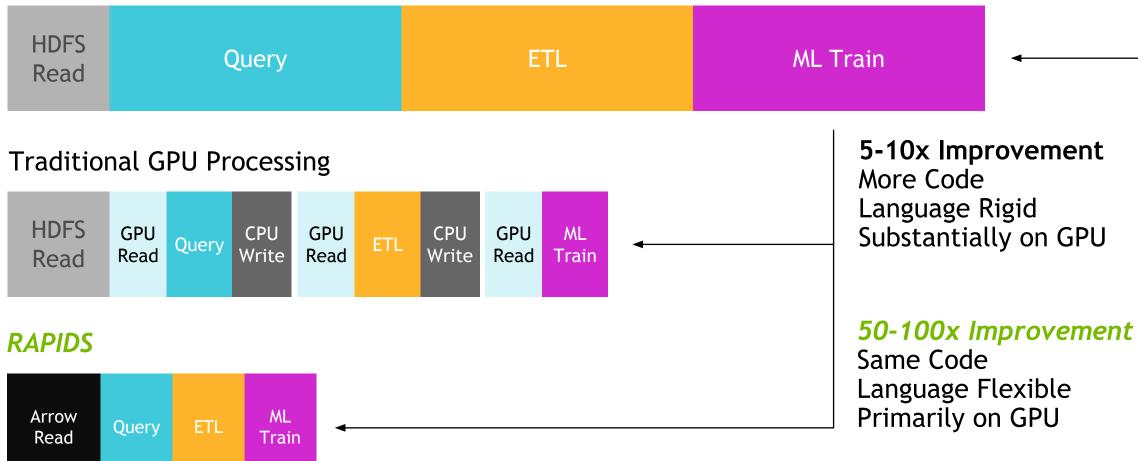


RAPIDS Foundations

The Evolution of Data Processing Faster Data Access, Less Data Movement

Hadoop Processing, Reading from Disk

CPU-Based Spark In-Memory Processing



OFS rite	HDFS Read	ML T	rain	
			25-100x Imp Less Code Language Fle Primarily In-A	xible

Why Use GPUs

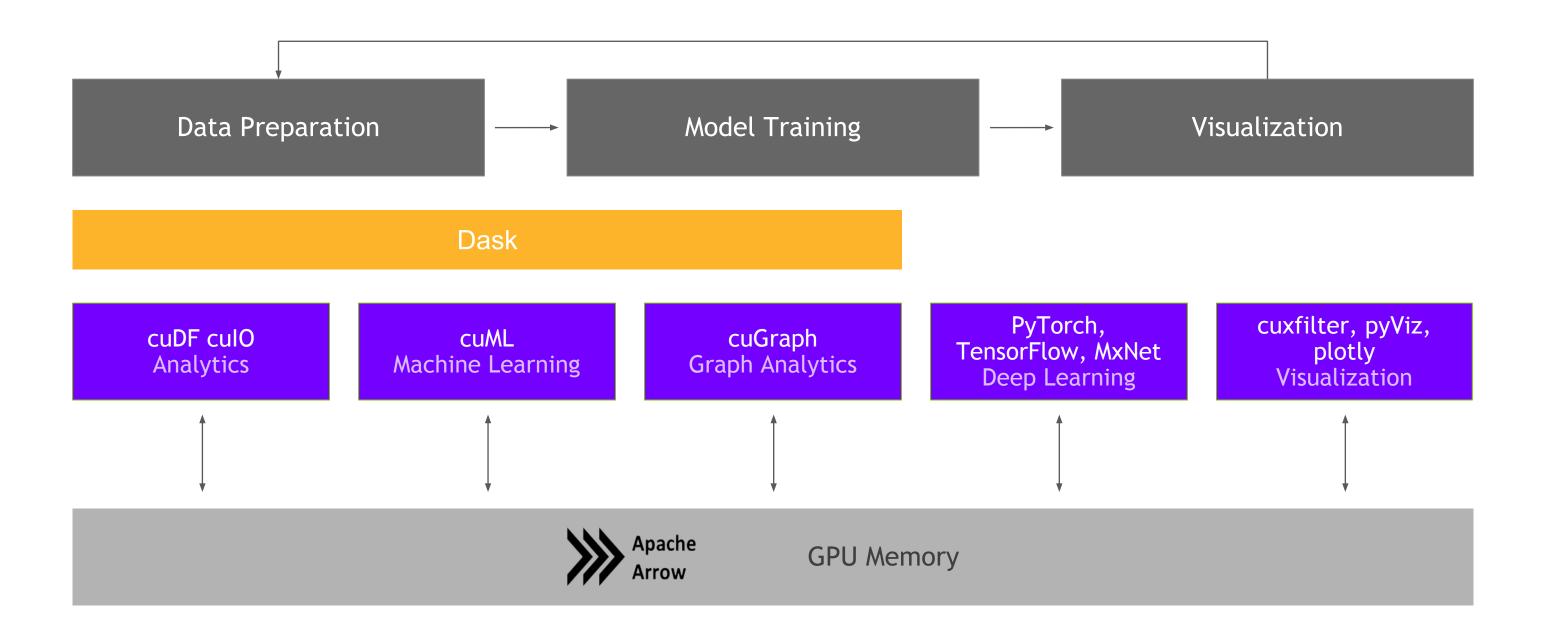
GPUs are built for intensive parallel processing. As datasets continue to grow, data scientists are limited by the sequential nature of CPU compute. GPUs provide the power and parallelism necessary for today's data science.

RAPIDS **GPU Accelerated Data Science**

RAPIDS_{cuDF}

RAPIDS _{cuML}

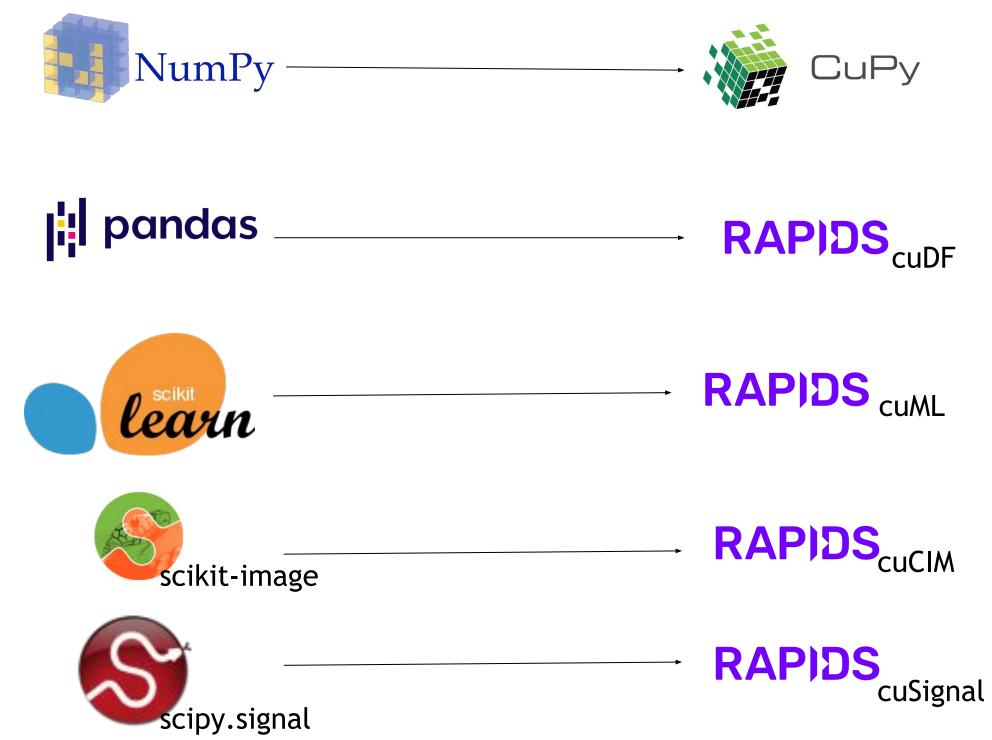
RAPIDS End-to-End GPU Accelerated Data Science



💿 NVIDIA.

5

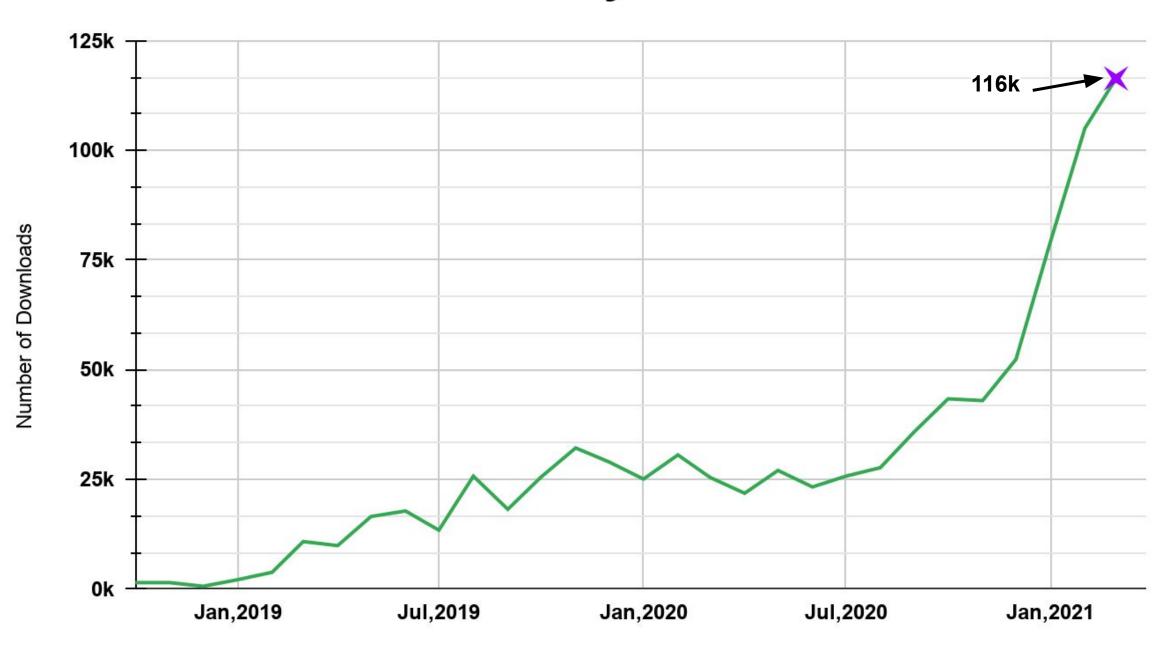
RAPIDS **GPU Accelerated Data Science**



Growth and Adoption

Growing community engagement

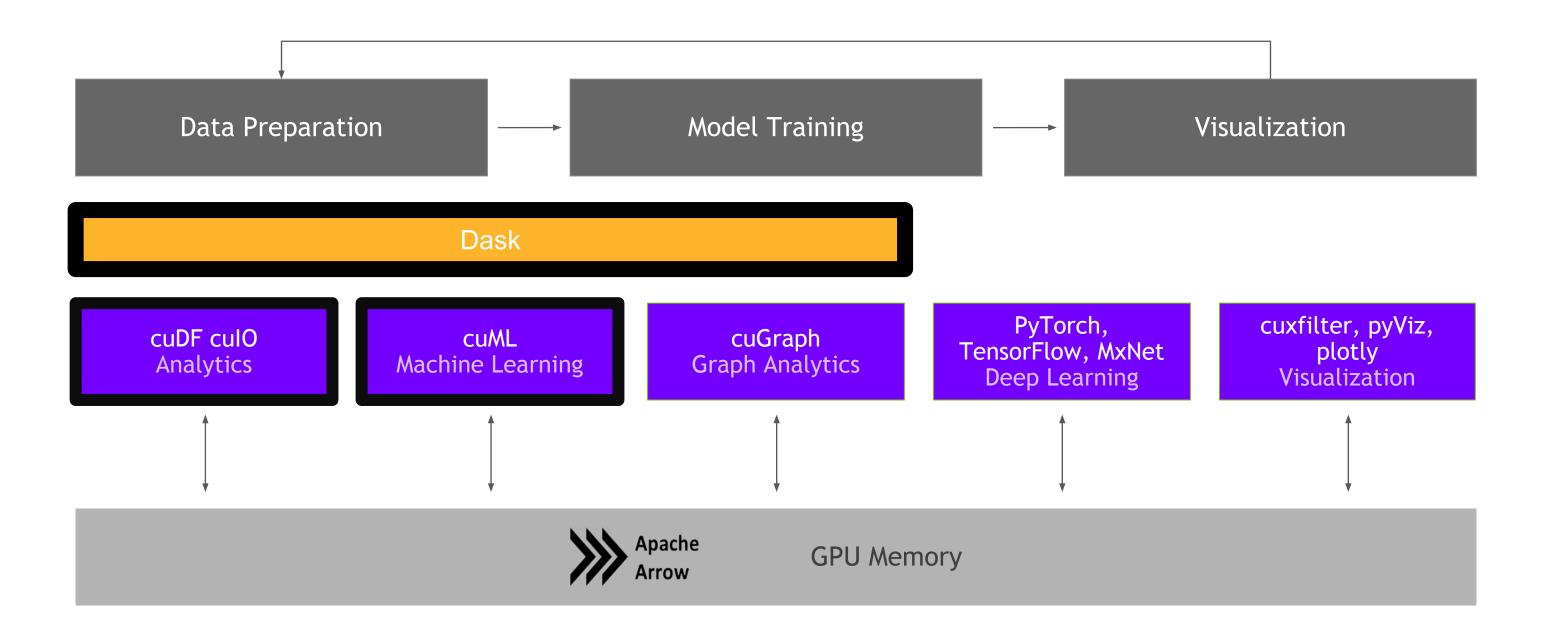
RAPIDS Monthly Downloads



Followers: 10,345

Stars: 8K+ Contributors: 150+

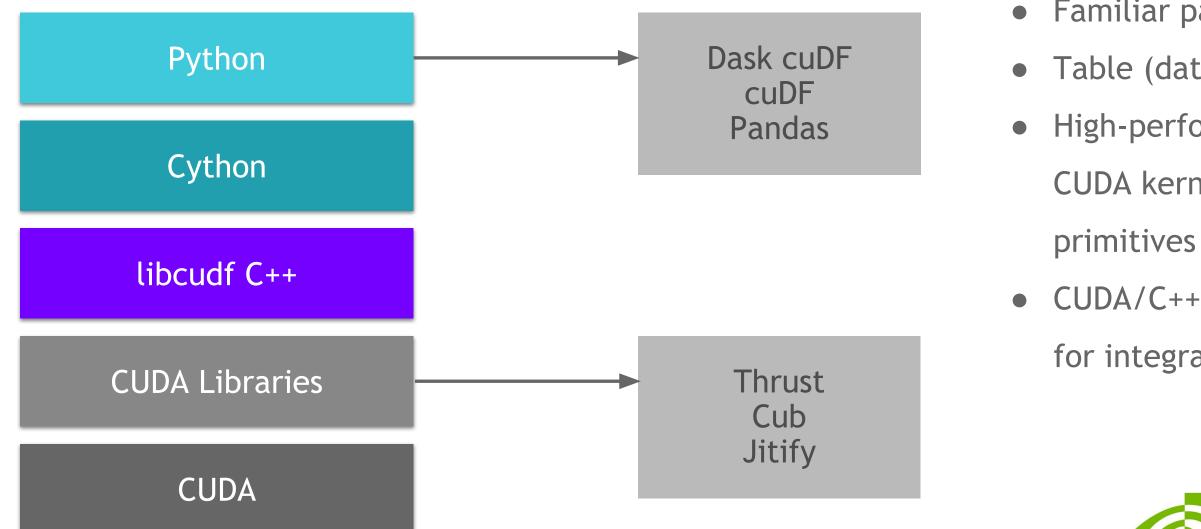
RAPIDS End-to-End GPU Accelerated Data Science



💿 NVIDIA.

8

What is cuDF? Expandable platform for GPU data science



Familiar pandas-like Python API

Table (dataframe) and column types and algorithms

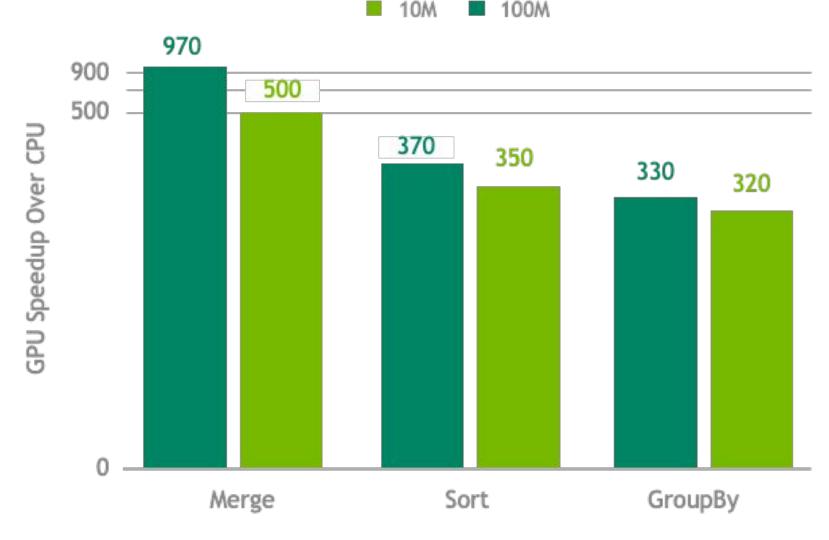
High-performance C++ layer provides GPU-optimized

CUDA kernels, data types, operations, and

CUDA/C++ is top level supported and used by many for integrating RAPIDS

ACCELERATED PRE-PROCESSING A FAMILIAR EXPERIENCE FOR DATA ENGINEERS

RAPIDS provides a GPU DataFrame library with a pandas-like API while providing significant performance improvements.

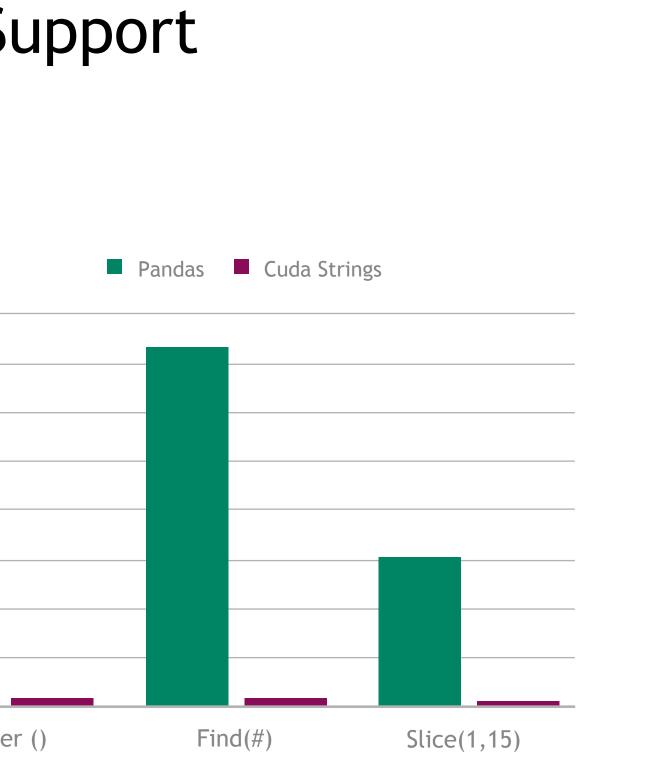


GPU: NVIDIA Tesla V100 32GB on DGX-1 CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

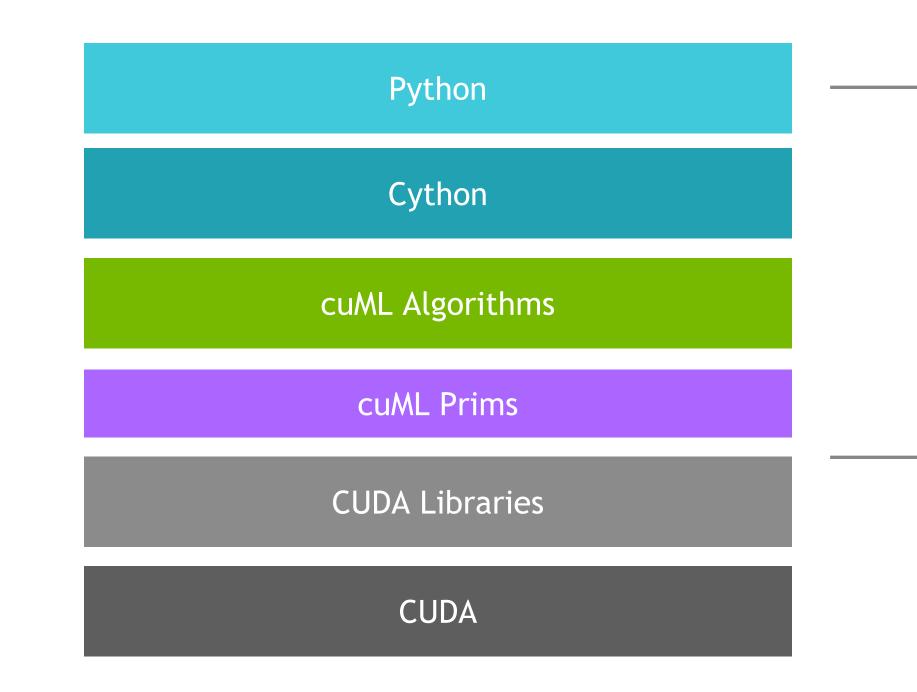
10

Comprehensive String Support Backbone of ETL: Strings

•	Regular Expressions		
			800
•	Element-wise operations		700
	 Split, Find, Extract, Cat, Typecasting, etc 		600
		spue	500
•	String GroupBys, Joins, Sorting, etc.	milliseconds	400
		milli	300 —
•	Categorical columns fully on GPU		200 —
			100 —
•	NLP Preprocessors		0
	 Tokenizers, Normalizers, Edit Distance, Porter Stemmer, etc. 		Lower



ML Technology Stack

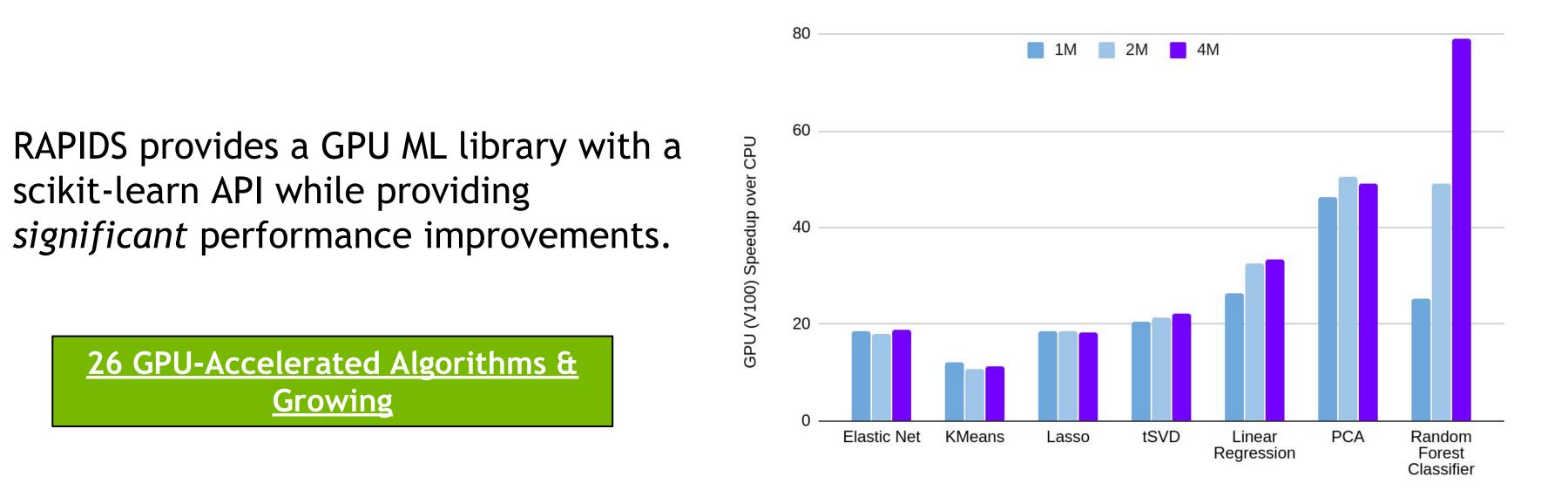


Dask cuML Dask cuDF cuDF Numpy

Thrust Cub cuSolver nvGraph CUTLASS cuSparse cuRand cuBlas

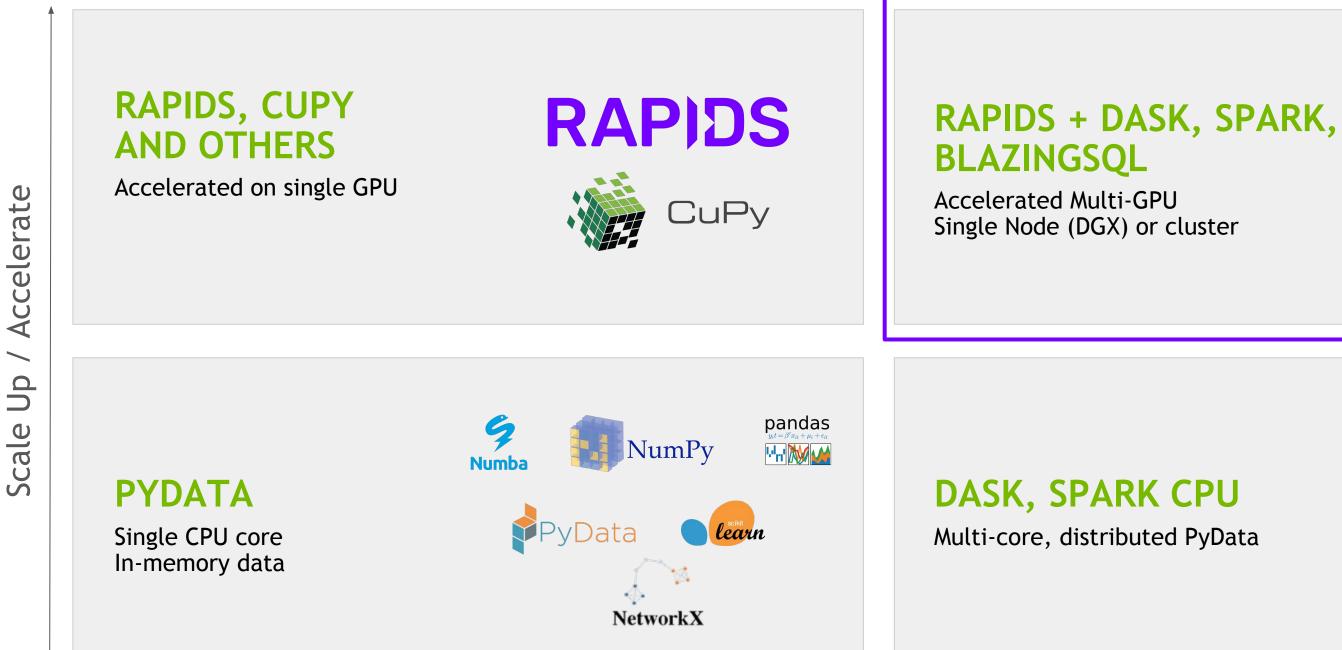
12

ACCELERATED MACHINE LEARNING **GPU-POWER WITH THE FEEL OF SCIKIT-LEARN**



≥ nvidia.

Scale Out with RAPIDS Multiple options to scale, from multi-GPU to a whole cluster



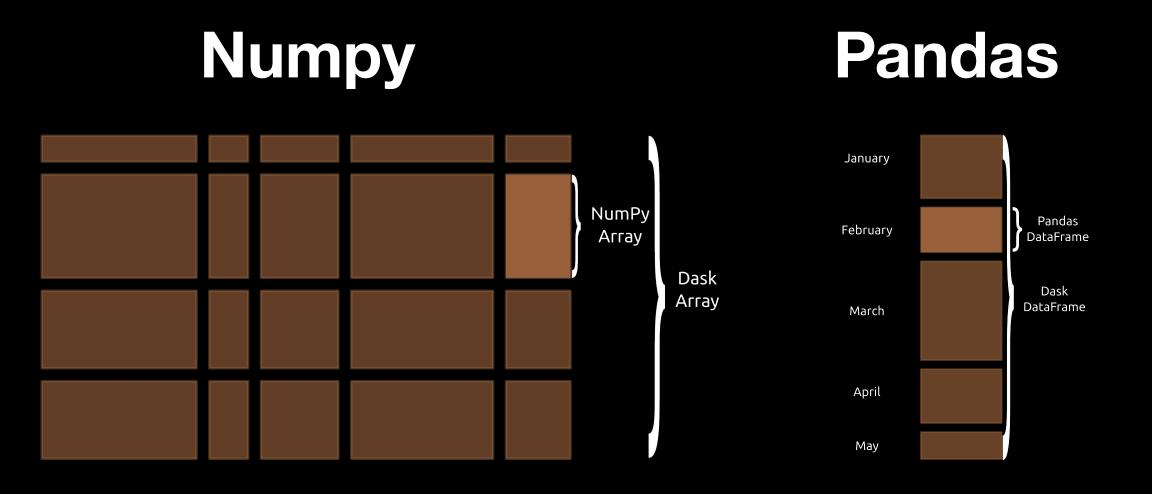
Scale Out / Parallelize

Python library for parallel computing

Scales Numpy, Pandas, and Scikit-Learn Accelerates custom systems

Easy for beginners, Secure and trusted for institutions

Dask accelerates the existing Python ecosystem Built alongside the current community

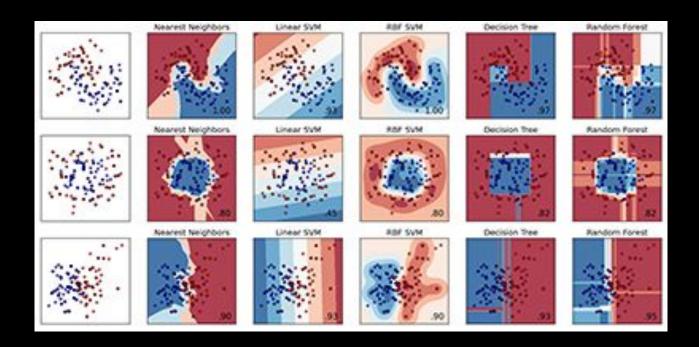


import numpy as np

x = np.ones((1000, 1000)) x + x.T - x.mean(axis=0) import pandas as pd

df = pd.read_csv("file.csv")
df.groupby("x").y.mean()

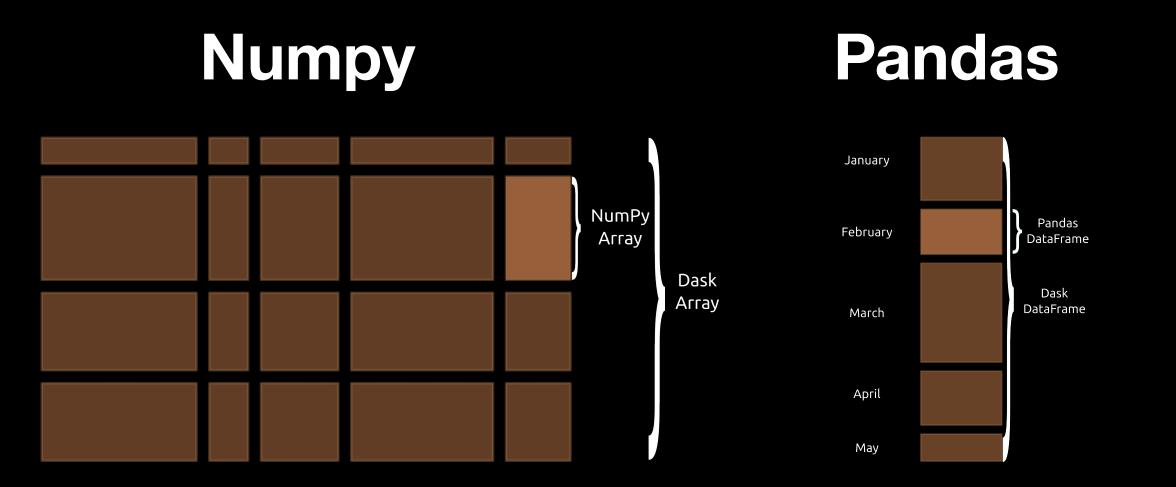
Scikit-Learn



from scikit_learn.linear_model \
 import LogisticRegression

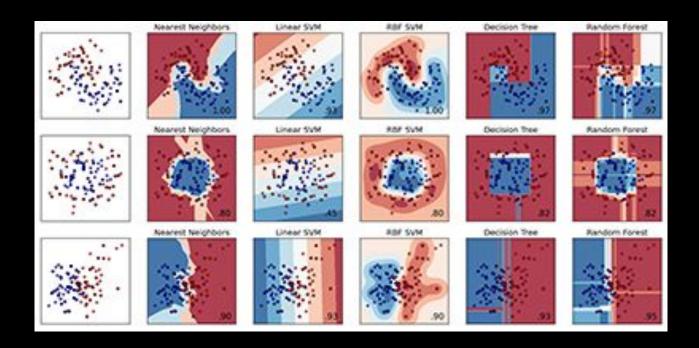
lr = LogisticRegression()
lr.fit(data, labe DASK

Dask accelerates the existing Python ecosystem Built alongside the current community



import dask.array as da import dask.dataframe as dd
x = da.ones((10000, 10000)) df = dd.read_csv("s3://*.csv")
x + x.T - x.mean(axis=0) df.groupby("x").y.mean()

Scikit-Learn



dd from dask_ml.linear_model \
 import LogisticRegression
.csv")
 lr = LogisticRegression()

lr.fit(data, labe DASK

```
def f(data, model) -> pd.DataFrame:
    . . .
def g(data, model) -> pd.DataFrame:
    . . .
results = []
for x in A:
  for y in B:
    if x < y:
       results.append(f(x, y))
    else:
       results.append(g(x, y))
```

Many codebases have opportunities for parallelism

But the problem doesn't look like a big array or big dataframe

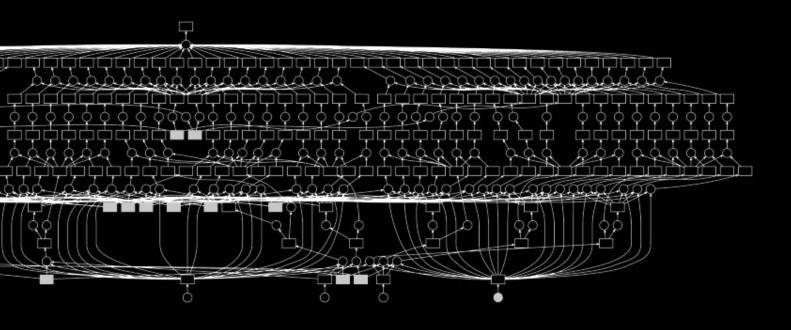

```
@dask.delayed
def f(data, model) -> pd.DataFrame:
    . . .
@dask.delayed
def g(data, model) -> pd.DataFrame:
    . . .
results = []
for x in A:
  for y in B:
    if x < y:
       results.append(f(x, y))
    else:
       results.append(g(x, y))
results = dask.compute(results)
```

Dask Delayed adds parallelism without changing existing logic.

Dask lazily traverses your code to build a recipe for future execution.

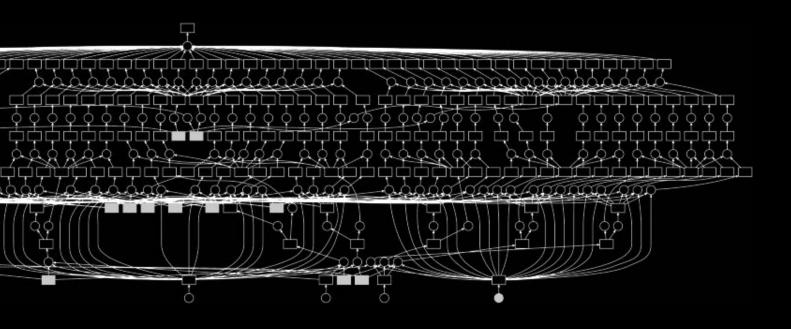

```
@dask.delayed
def f(data, model) -> pd.DataFrame:
    . . .
@dask.delayed
def g(data, model) -> pd.DataFrame:
    . . .
results = []
for x in A:
  for y in B:
    if x < y:
       results.append(f(x, y))
    else:
       results.append(g(x, y))
results = dask.compute(results)
```

Your code creates a task graph for future execution. Each node is one Python function.



```
@dask.delayed
def f(data, model) -> pd.DataFrame:
    . . .
@dask.delayed
def g(data, model) -> pd.DataFrame:
    . . .
results = []
for x in A:
  for y in B:
    if x < y:
       results.append(f(x, y))
    else:
       results.append(g(x, y))
```

results = dask.compute(results)



Dask then executes that graph on parallel hardware

Dask deploys on all major resource managers Cloud, HPC, or Yarn, it's all the same to Dask

Cloud

cluster = KubeCluster() cluster = ECSCluster()

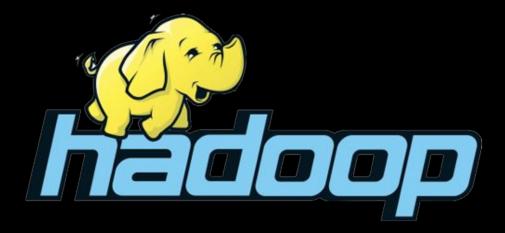
df = dd.read_parquet(...)

HPC

cluster = PBSCluster() cluster = LSFCluster() cluster = SLURMCluster()

df = dd.read_parquet(...)

Hadoop/Spark



cluster = YarnCluster()

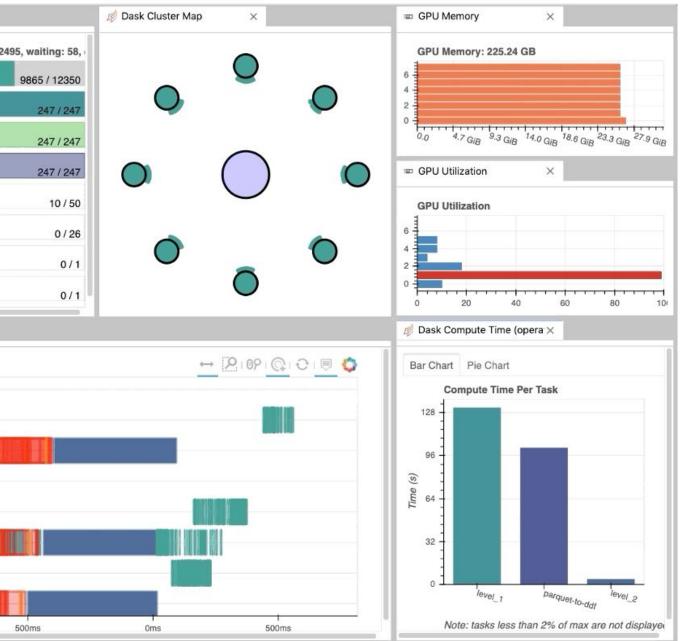
df = dd.read_parqu

Dask + RAPIDS PyData-native scalable analytics

	Depl	loyable:	Kubernetes,	Yarn,	SLURM
--	------	----------	-------------	-------	-------

- PyData native: Easy migration, built on top of NumPy, Pandas, Scikit-learn
- **Easy scalability**: Easy to install; scales to thousands of nodes
- Popular: most Common parallelism framework in PyData and SciPy community

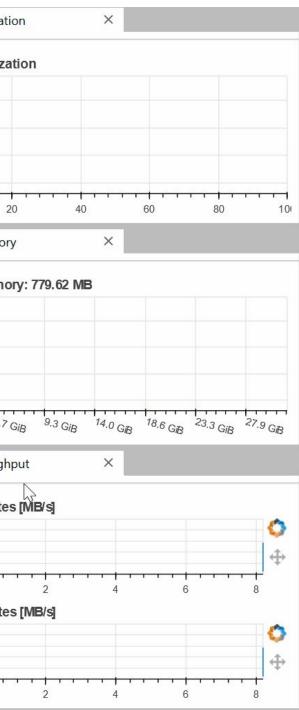
💋 Dask Progress	×		
Progress total: 1316	69, in-memory	r: 7528, prod	cessing: 2
split			
level_1		-	
shuffle-part			
parquet-to-ddf			
level_2			
level_3			
tuple			
categories			
🧳 Dask Task Stream	×		
Task Stream			
-	0		
	-		
	_		1.10
			_ 11
_	_		
500ms	Or	ns	



RAPIDS Dev Environment

JupyterLab + Friends

🗏 GPU Dashboard Demo.ipynt 🔍	IIII GF	PU Utilizat
<pre> + * C C Code ~ import distributed from dask_cuda import LocalCUDACluster import dask_cudf cluster = LocalCUDACluster() client = distributed.Client(cluster) []: gdf = dask_cudf.read_csv('/datasets/nyc_taxi/**/*')</pre>	Python 3 O	PU Utiliza
<pre>[]: gdf = gdf.persist()</pre>	i≡ GF	PU <mark>M</mark> emor
[]: len(gdf)		PU Memo
😰 Dask Task Stream X	💋 Dask Progress 🛛 🗙	TX Byte
	5000 4000 3000 2000 1000 0 5000 4000 3000 2000 1000 0 0	RX Byte



- JupyterLab Dask Extension
- NVDashboard Extension

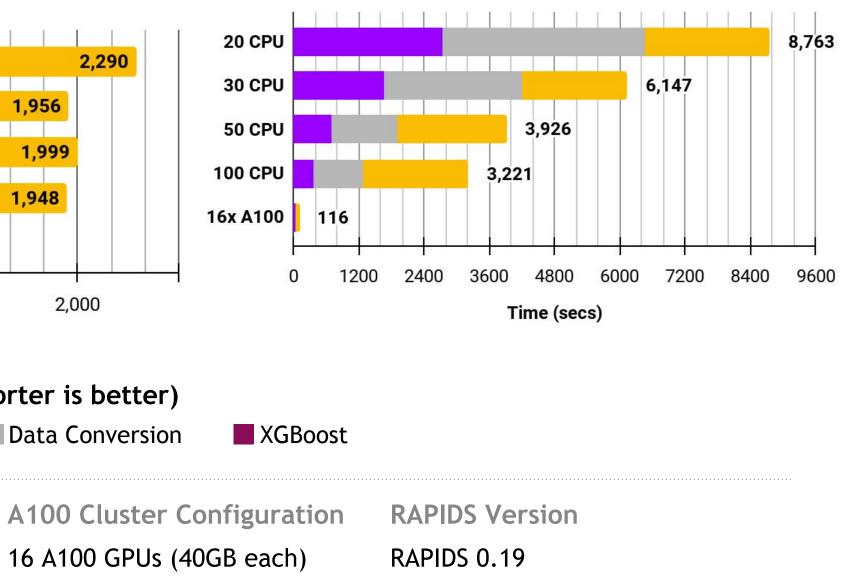
Faster Speeds, Real World Benefits

Faster Data Access, Less Data Movement

XGBoost Machine Learning Load and Data Preparation 20 CPU 20 CPU Nodes 2,74 2,290 30 CPU 1,956 30 CPU Nodes 1,675 50 CPU Nodes 715 **50 CPU** 1,999 100 CPU 379 100 CPU 1,948 16x A100 16x A100 30 73 1,000 2,000 1,000 1,500 2,000 0 0 500 Time (sec) Time (sec) Time in seconds (shorter is better) culO/cuDF (Load and Data Prep) Data Conversion **CPU Cluster Configuration Benchmark**

culO/cuDF -

CPU nodes (61 GiB memory, 8 vCPUs, 200GB CSV dataset; Data prep includes joins, variable transformations 64-bit platform), Apache Spark



End-to-End

RAPIDS/Dask End-to-End Performance **Reducing Data Science Processes from Hours to Seconds**

20 CPU Nodes

30 CPU Nodes

50 CPU Nodes

100 CPU Nodes

16x A100 RAPIDS v0.15

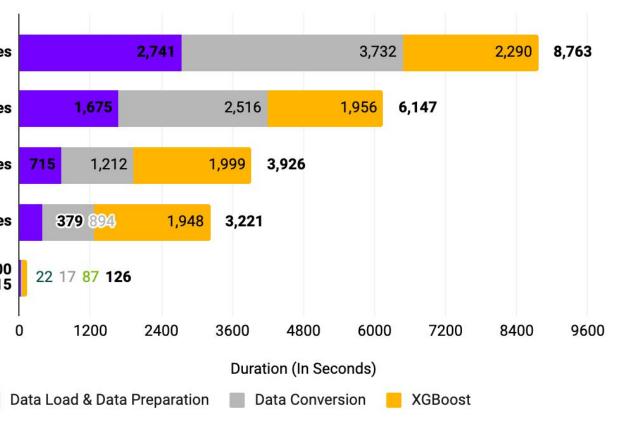
RAPIDS delivers massive speed-ups across the end-to-end data science lifecycle. Conducting benchmarks in a commercial cloud environment, we're able to get incredible performance running a common ML model training pipeline.

Between loading and cleansing data, engineering features, and training a classifier using a 200GB CSV dataset, a RAPIDS-based pipeline completed these operations in *just* over two minutes. The same process takes two and half hours on a similar CPU-configuration.

70x

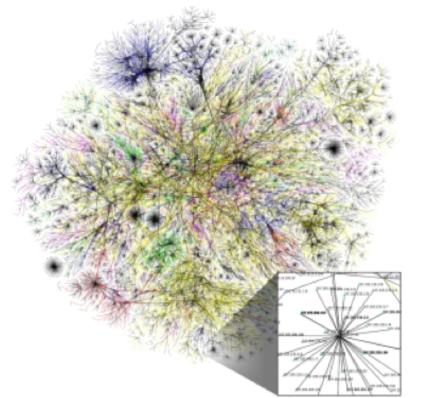
Faster Performance than Similar CPU Configuration

RAPIDS End-to-End Workflow Runtimes



More Cost-Effective than Similar CPU Configuration

*CPU approximate to n1-highmem-8 (8 vCPUs, 52GB memory) on Google Cloud Platform. TCO calculations-based on Cloud instance costs. 📀 nvidia. 26



cuGraph - Algorithms

GPU-accelerated NetworkX

	Community	
Traveling Salesman	Routing	Components
Minimum Spanning Tree Maximum Spanning Tree	Tree	Link Analysis
Graph Classes Subgraph Extraction Egonet	Structure	Link Prediction
Force Atlas 2 Hungarian Algorithm	Other	Traversal
Renumbering Auto-Renumbering NetworkX converters	Utilities	Centrality

Spectral Clustering - Balanced Cut and Modularity Maximization Louvain (Multi-GPU) and Leiden Ensemble Clustering for Graphs KCore and KCore Number Triangle Counting K-Truss

Weakly Connected Components Strongly Connected Components

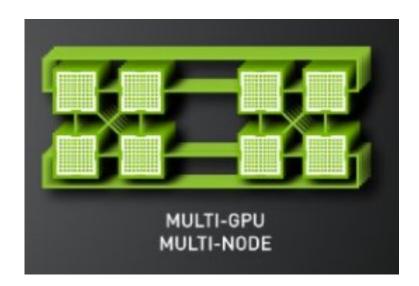
Page Rank (Multi-GPU) Personal Page Rank (Multi-GPU) HITS

Jaccard Weighted Jaccard Overlap Coefficient

Single Source Shortest Path (SSSP) (Multi-GPU) Breadth First Search (BFS) (Multi-GPU)

Katz (Multi-GPU) Betweenness Centrality (Vertex and Edge)

Scaling and Expanding Graph Analytics

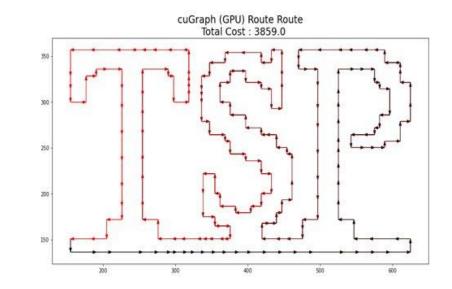


Multi-node, Multi-GPU Scaling

New graph primitives will underpin all algorithms

PageRank performance up to 180x faster than CPU

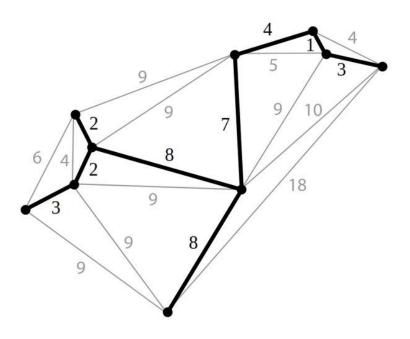
New 2d partitioning methods for large graphs



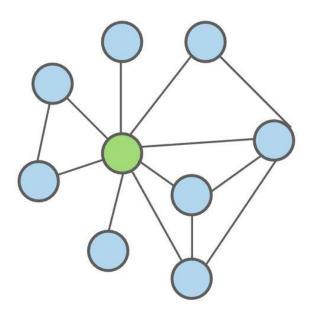
Traveling Salesperson Solver

Up to 32x faster than CPU alternatives

Improved NetworkX API Compatibility



Minimum Spanning Tree



EGONet

Visualization and NodeJS



Plot.ly Dash

A Python visualization framework able to use RAPIDS libraries for notebooks and hosted dashboard applications.

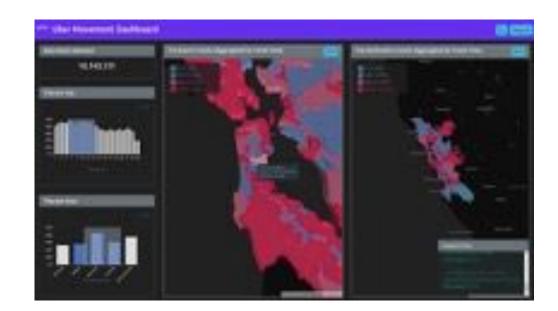
Ideal for purpose built analytics applications, but also useful for notebook workflows.

Integrated RAPIDS backend for large datasets.

RAPIDS cuXFilter

A Python notebook based crossfilter dashboard library, using cuDF. Incorporates many chart libraries such as Datashader, HvPlot, Holoviews, Bokeh, and Deck.gl.

Easy integration with RAPIDS notebook based workflows.



RAPIDS Node.js (early alpha)

Experimental Node.js Javascript bindings for RAPIDS and related GPU libraries. Usable for both visualization and general-purpose compute on Node.js platforms.

Build End-to-End Data Science Applications Leverage RAPIDS Core Libraries to Build Custom Solutions

	Description	Similar To	Problem Domain	Maturity	Performance	Example User	API Docs
cuDF	Dataframes & ETL	pandas	Data Preparation			Walmart >¦<	<u>Read the</u> <u>Docs</u>
Apache Spark 3.0 Plugin	ETL	Apache Spark	Data Preparation			CLOUDERA	<u>Read the</u> <u>Docs</u>
BlazingSQL	ANSI SQL	SQL	Data Preparation			OAK RIDGE National Laboratory	<u>Read the</u> <u>Docs</u>
cuML	Machine Learning	scikit-learn	Model Training			CapitalOne	<u>Read the</u> <u>Docs</u>
cuGraph	Graph Analytics	NetworkX	Model Training			VISA	<u>Read the</u> <u>Docs</u>
XGBoost	GBMs	XGBoost	Model training			🧕 Scotiabank	<u>Read the</u> <u>Docs</u>
RAPIDSViz	Large-Scale Visualization	Bokeh, DataShader, HoloViews	Visualization			iiii plotly	<u>Read the</u> <u>Docs</u>

Use RAPIDS-Enabled Tools & Frameworks

High-Performance Solutions for a Wide Variety of Domains

	Description	Similar To	Problem Domain	Maturity	Performance	Example User	API Docs
CLX	Cyber log parsing & analytics	N/A	Cybersecurity			BEST BUY	<u>Read the</u> <u>Docs</u>
cuCIM	Image processing & analytics	scikit-image	Image Processing			QUANSIGHT	<u>Read the</u> <u>Docs</u>
cuSignal	Signal processing & analytics	N/A	Signal Processing			LOCKHEED MARTIN	<u>Read the</u> <u>Docs</u>
cuSpatial	Spatial processing & analytics	N/A	Spatial Data Processing			tsinc	<u>Read the</u> <u>Docs</u>
cuStreamz	Stream processing & analytics	Streamz & Kafka	Stream Processing				<u>Read the</u> <u>Docs</u>
Node-RAPIDS	Server-side JavaScript	Node.js	Web Development			Technical Preview	<u>Read the</u> <u>Docs</u>
NVTabular	Feature engineering and data loading	N/A	Recommender Systems				<u>Read the</u> <u>Docs</u>

Optimizations

- Complex Hash Aggregations
- Character Parallel String Algorithms
- Parquet GPU Direct Storage Support

cuDF

Updates + Improvements

New Features

- List, Struct, Dictionary, And Decimal types and operations
- Expanded GroupBy Operations
- Improved API and Developer Docs

Upcoming Improvements

- Abstract Syntax Tree Evaluation
- ORC GPU Direct Storage
- Reduce Python Overheads

- Improved CUDA Stream Support
- Time Series Support
- Conditional Joins

Build Infrastructure

- CUDA 11.2 Support And CUDA Enhanced Compatibility
- CMake Refactored for easier source builds

- Upgrade to C++17
- CUDA 11.4

The Rapidly Growing RAPIDS Ecosystem Supported, Used, & Extended by a Wide Variety of Partners

Dask/RAPIDS in HPC Supported, Used, and Extended in Research and Academia

Dask in HPC (Recording)

Dask in HEP (Recording)

Deploy RAPIDS Everywhere Focused on Robust Functionality, Deployment, and User Experience

C- Alibaba Cloud

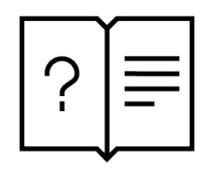
Integration with major cloud providers | Both containers and cloud specific machine instances Support for Enterprise and HPC Orchestration Layers

35

NVIDIA

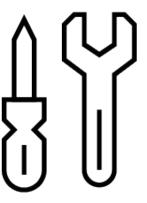
How to Get Started with RAPIDS

A Variety of Ways to Get Up & Running



More about RAPIDS

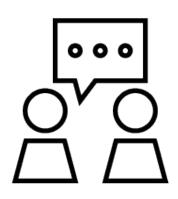
- Learn more at <u>RAPIDS.ai</u>
- Read the <u>API docs</u>
- Check out the RAPIDS blog \bullet
- Read the <u>NVIDIA DevBlog</u>



Self-Start Resources

- Get started with <u>RAPIDS</u>
- Deploy on the Cloud today
- Start with Google Colab
- Look at the cheat sheets

Keep in touch with us on the Dask Slack workspace: link here



Discussion & Support

- Check the <u>RAPIDS GitHub</u>
- Use the <u>NVIDIA Forums</u>
- Reach out on <u>Slack</u>
- Talk to <u>NVIDIA Services</u>

Let's get started!