
PyHEP 2021

Benjamin Zaitlen

Intro to RAPIDS:

2

RAPIDS Foundations

3

25-100x Improvement
Less Code
Language Flexible
Primarily In-Memory

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

HDFS
Read

Query ETL ML Train

HDFS
Read

Query ETL ML Train

HDFS
Read

GPU
Read Query CPU

Write
GPU
Read ETL CPU

Write
GPU
Read

ML
Train

5-10x Improvement
More Code
Language Rigid
Substantially on GPU

Traditional GPU Processing

Hadoop Processing, Reading from Disk

CPU-Based Spark In-Memory Processing

RAPIDS

Arrow
Read ETL ML

TrainQuery

50-100x Improvement
Same Code
Language Flexible
Primarily on GPU

Why Use GPUs
GPUs are built for intensive
parallel processing. As datasets
continue to grow, data scientists
are limited by the sequential
nature of CPU compute. GPUs
provide the power and parallelism
necessary for today’s data science.

?

The Evolution of Data Processing
Faster Data Access, Less Data Movement

4

RAPIDS
GPU Accelerated Data Science

cuDF

cuML

5

cuDF cuIO
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch,
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz,
plotly

Visualization

Dask

 GPU Memory

RAPIDS
End-to-End GPU Accelerated Data Science

6

RAPIDS
GPU Accelerated Data Science

cuDF

cuML

cuCIM

cuSignal
scipy.signal

scikit-image

7

Growth and Adoption

 @RAPIDSai
Followers: 10,345

Contributors: 150+

github.com/rapidsai

Stars: 8K+

116k

Growing community engagement

https://twitter.com/RAPIDSai
https://github.com/rapidsai

8

cuDF cuIO
Analytics

Data Preparation VisualizationModel Training

cuML
Machine Learning

cuGraph
Graph Analytics

PyTorch,
TensorFlow, MxNet

Deep Learning

cuxfilter, pyViz,
plotly

Visualization

Dask

 GPU Memory

RAPIDS
End-to-End GPU Accelerated Data Science

9

What is cuDF?

● Familiar pandas-like Python API

● Table (dataframe) and column types and algorithms

● High-performance C++ layer provides GPU-optimized

CUDA kernels, data types, operations, and

primitives

● CUDA/C++ is top level supported and used by many

for integrating RAPIDS

Expandable platform for GPU data science

Dask cuDF
cuDF

Pandas

Thrust
Cub

Jitify

Python

Cython

libcudf C++

CUDA Libraries

CUDA

10

Single GPU Speed-Ups vs pandas

ACCELERATED PRE-PROCESSING
A FAMILIAR EXPERIENCE FOR DATA ENGINEERS

RAPIDS provides a GPU DataFrame library
with a pandas-like API while providing
significant performance improvements.

GPU: NVIDIA Tesla V100 32GB on DGX-1
CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

11

Comprehensive String Support

• Regular Expressions

• Element-wise operations
• Split, Find, Extract, Cat, Typecasting, etc…

• String GroupBys, Joins, Sorting, etc.

• Categorical columns fully on GPU

• NLP Preprocessors
• Tokenizers, Normalizers, Edit Distance, Porter

Stemmer, etc.

Backbone of ETL: Strings

800

700

600

400

300

200

0
Lower () Find(#) Slice(1,15)

m
ill

is
ec

on
ds

Pandas Cuda Strings

500

100

12

Dask cuML
Dask cuDF

cuDF
Numpy

Python

Thrust
Cub

cuSolver
nvGraph
CUTLASS
cuSparse
cuRand
cuBlas

Cython

cuML Algorithms

cuML Prims

CUDA Libraries

CUDA

ML Technology Stack

13

ACCELERATED MACHINE LEARNING

1x V100 vs. 2x 20 Core CPUs (DGX-1, RAPIDS 0.15)

RAPIDS provides a GPU ML library with a
scikit-learn API while providing
significant performance improvements.

26 GPU-Accelerated Algorithms &
Growing

GPU-POWER WITH THE FEEL OF SCIKIT-LEARN

https://github.com/rapidsai/cuml#supported-algorithms
https://github.com/rapidsai/cuml#supported-algorithms

14

Accelerated on single GPU

RAPIDS, CUPY
AND OTHERS

Accelerated Multi-GPU
Single Node (DGX) or cluster

RAPIDS + DASK, SPARK,
BLAZINGSQL

Single CPU core
In-memory data

PYDATA
Multi-core, distributed PyData

DASK, SPARK CPUSc
al

e
U

p
/

Ac
ce

le
ra

te

Scale Out / Parallelize

Scale Out with RAPIDS
Multiple options to scale, from multi-GPU to a whole cluster

Python library for parallel computing

Scales Numpy, Pandas, and Scikit-Learn
Accelerates custom systems

Easy for beginners,
Secure and trusted for institutions

import numpy as np

x = np.ones((1000, 1000))

x + x.T - x.mean(axis=0)

import pandas as pd

df = pd.read_csv(“file.csv”)

df.groupby(“x”).y.mean()

from scikit_learn.linear_model \

 import LogisticRegression

lr = LogisticRegression()

lr.fit(data, labels)

Dask accelerates the existing Python ecosystem
Built alongside the current community

Numpy Pandas Scikit-Learn

import dask.array as da

x = da.ones((10000, 10000))

x + x.T - x.mean(axis=0)

import dask.dataframe as dd

df = dd.read_csv(“s3://*.csv”)

df.groupby(“x”).y.mean()

from dask_ml.linear_model \

 import LogisticRegression

lr = LogisticRegression()

lr.fit(data, labels)

Dask accelerates the existing Python ecosystem
Built alongside the current community

Numpy Pandas Scikit-Learn

Parallelize existing complex code
Dask scales existing codebases with modest changes

Many codebases have opportunities
for parallelism

But the problem doesn’t look like a big
array or big dataframe

def f(data, model) -> pd.DataFrame:

 …

def g(data, model) -> pd.DataFrame:

 …

results = []

for x in A:

 for y in B:

 if x < y:

 results.append(f(x, y))

 else:

 results.append(g(x, y))

Parallelize existing complex code
Dask scales existing codebases with modest changes

Dask Delayed adds parallelism without
changing existing logic.

Dask lazily traverses your code to
build a recipe for future execution.

@dask.delayed

def f(data, model) -> pd.DataFrame:

 …
@dask.delayed

def g(data, model) -> pd.DataFrame:

 …

results = []

for x in A:

 for y in B:

 if x < y:

 results.append(f(x, y))

 else:

 results.append(g(x, y))

results = dask.compute(results)

Parallelize existing complex code
Dask scales existing codebases with modest changes

Your code creates a task graph for
future execution.
Each node is one Python function.

@dask.delayed

def f(data, model) -> pd.DataFrame:

 …
@dask.delayed

def g(data, model) -> pd.DataFrame:

 …

results = []

for x in A:

 for y in B:

 if x < y:

 results.append(f(x, y))

 else:

 results.append(g(x, y))

results = dask.compute(results)

Parallelize existing complex code
Dask scales existing codebases with modest changes

Dask then executes that graph on
parallel hardware

@dask.delayed

def f(data, model) -> pd.DataFrame:

 …
@dask.delayed

def g(data, model) -> pd.DataFrame:

 …

results = []

for x in A:

 for y in B:

 if x < y:

 results.append(f(x, y))

 else:

 results.append(g(x, y))

results = dask.compute(results)

cluster = KubeCluster()

cluster = ECSCluster()

df = dd.read_parquet(...)

cluster = PBSCluster()

cluster = LSFCluster()

cluster = SLURMCluster()

…
df = dd.read_parquet(...)

cluster = YarnCluster()

df = dd.read_parquet(...)

Dask deploys on all major resource managers
Cloud, HPC, or Yarn, it’s all the same to Dask

Cloud HPC Hadoop/Spark

23

Dask + RAPIDS
PyData-native scalable analytics

▸ Deployable: Kubernetes, Yarn, SLURM

▸ PyData native: Easy migration, built on
top of NumPy, Pandas, Scikit-learn

▸ Easy scalability: Easy to install; scales to
thousands of nodes

▸ Popular: most Common parallelism
framework in PyData and SciPy community

24

RAPIDS Dev Environment
JupyterLab + Friends

● JupyterLab
● Dask Extension
● NVDashboard Extension

25

Time in seconds (shorter is better)
cuIO/cuDF (Load and Data Prep) Data Conversion XGBoost

Faster Speeds, Real World Benefits
Faster Data Access, Less Data Movement

cuIO/cuDF –
Load and Data Preparation XGBoost Machine Learning End-to-End

Benchmark

200GB CSV dataset; Data prep includes
joins, variable transformations

CPU Cluster Configuration

CPU nodes (61 GiB memory, 8 vCPUs,
64-bit platform), Apache Spark

RAPIDS Version

RAPIDS 0.19

A100 Cluster Configuration

16 A100 GPUs (40GB each)

26

RAPIDS/Dask End-to-End Performance
Reducing Data Science Processes from Hours to Seconds

RAPIDS delivers massive speed-ups across the end-to-end
data science lifecycle. Conducting benchmarks in a
commercial cloud environment, we’re able to get
incredible performance running a common ML model
training pipeline.

Between loading and cleansing data, engineering features,
and training a classifier using a 200GB CSV dataset, a
RAPIDS-based pipeline completed these operations in just
over two minutes. The same process takes two and half
hours on a similar CPU-configuration.

*CPU approximate to n1-highmem-8 (8 vCPUs, 52GB memory) on Google Cloud Platform. TCO calculations-based on Cloud instance costs.

16

A100s Provide More Power
than 100 CPU Nodes

70x

Faster Performance than
Similar CPU Configuration

20x

More Cost-Effective than
Similar CPU Configuration

27

Spectral Clustering
 - Balanced Cut and Modularity Maximization
Louvain (Multi-GPU) and Leiden
Ensemble Clustering for Graphs
KCore and KCore Number
Triangle Counting
K-Truss

Jaccard
Weighted Jaccard
Overlap Coefficient

Single Source Shortest Path (SSSP) (Multi-GPU)
Breadth First Search (BFS) (Multi-GPU)

Katz (Multi-GPU)
Betweenness Centrality (Vertex and Edge)

Weakly Connected Components
Strongly Connected Components

Page Rank (Multi-GPU)
Personal Page Rank (Multi-GPU)
HITS

Renumbering
Auto-Renumbering

NetworkX converters Centrality

Traversal

Link Prediction

Link Analysis

Components

Community

Utilities

Structure

GPU-accelerated NetworkX

cuGraph - Algorithms

Graph Classes
Subgraph Extraction

Egonet

TreeMinimum Spanning Tree
Maximum Spanning Tree

Other
Force Atlas 2

Hungarian Algorithm

RoutingTraveling Salesman

28

Scaling and Expanding Graph Analytics

Multi-node, Multi-GPU Scaling

New graph primitives will underpin all
algorithms

PageRank performance up to 180x
faster than CPU

New 2d partitioning methods for large
graphs

Traveling Salesperson Solver

Up to 32x faster than CPU
alternatives

Minimum Spanning Tree

EGONet

Improved NetworkX API
Compatibility

29

Visualization and NodeJS

Plot.ly Dash

A Python visualization framework able to use
RAPIDS libraries for notebooks and hosted
dashboard applications.

Ideal for purpose built analytics applications,
but also useful for notebook workflows.

Integrated RAPIDS backend for large datasets.

RAPIDS cuXFilter

A Python notebook based crossfilter
dashboard library, using cuDF.
Incorporates many chart libraries such as
Datashader, HvPlot, Holoviews, Bokeh, and
Deck.gl.

Easy integration with RAPIDS notebook based
workflows.

RAPIDS Node.js (early alpha)

Experimental Node.js Javascript bindings for
RAPIDS and related GPU libraries. Usable for
both visualization and general-purpose
compute on Node.js platforms.

30

Description Similar To Problem Domain Maturity Performance Example User API Docs

 cuDF Dataframes & ETL pandas Data Preparation Read the
Docs

Apache Spark
3.0 Plugin

ETL Apache Spark Data Preparation Read the
Docs

BlazingSQL ANSI SQL SQL Data Preparation Read the
Docs

cuML Machine Learning scikit-learn Model Training Read the
Docs

cuGraph Graph Analytics NetworkX Model Training Read the
Docs

XGBoost GBMs XGBoost Model training Read the
Docs

RAPIDSViz Large-Scale
Visualization

Bokeh, DataShader,
HoloViews Visualization Read the

Docs

Build End-to-End Data Science Applications
Leverage RAPIDS Core Libraries to Build Custom Solutions

https://docs.rapids.ai/api/cudf/stable/
https://docs.rapids.ai/api/cudf/stable/
https://nvidia.github.io/spark-rapids/Getting-Started/
https://nvidia.github.io/spark-rapids/Getting-Started/
https://docs.blazingdb.com/docs
https://docs.blazingdb.com/docs
https://docs.rapids.ai/api/cuml/stable/
https://docs.rapids.ai/api/cuml/stable/
https://docs.rapids.ai/api/cugraph/stable/
https://docs.rapids.ai/api/cugraph/stable/
https://xgboost.readthedocs.io/en/latest/gpu/index.html
https://xgboost.readthedocs.io/en/latest/gpu/index.html
https://docs.rapids.ai/api/cuxfilter/stable/
https://docs.rapids.ai/api/cuxfilter/stable/

31

Description Similar To Problem Domain Maturity Performance Example User API Docs

 CLX Cyber log parsing
& analytics N/A Cybersecurity Read the

Docs

cuCIM Image processing
& analytics scikit-image Image Processing Read the

Docs

cuSignal Signal processing
& analytics N/A Signal Processing Read the

Docs

cuSpatial Spatial processing
& analytics N/A Spatial Data

Processing
Read the

Docs

cuStreamz Stream processing
& analytics Streamz & Kafka Stream

Processing
Read the

Docs

Node-RAPIDS Server-side
JavaScript Node.js Web

Development
Technical
Preview

Read the
Docs

NVTabular
Feature

engineering and
data loading

N/A Recommender
Systems

Read the
Docs

Use RAPIDS-Enabled Tools & Frameworks
High-Performance Solutions for a Wide Variety of Domains

https://docs.rapids.ai/api/clx/stable/
https://docs.rapids.ai/api/clx/stable/
https://docs.rapids.ai/api/cucim/nightly/index.html
https://docs.rapids.ai/api/cucim/nightly/index.html
https://docs.rapids.ai/api/cusignal/stable/
https://docs.rapids.ai/api/cusignal/stable/
https://github.com/rapidsai/cuspatial
https://github.com/rapidsai/cuspatial
https://medium.com/rapids-ai/gpu-accelerated-stream-processing-with-rapids-f2b725696a61
https://medium.com/rapids-ai/gpu-accelerated-stream-processing-with-rapids-f2b725696a61
https://github.com/rapidsai/node-rapids
https://github.com/rapidsai/node-rapids
https://nvidia.github.io/NVTabular/main/index.html
https://nvidia.github.io/NVTabular/main/index.html

32

cuDF
Updates + Improvements

Upcoming Improvements

● Abstract Syntax Tree Evaluation
● ORC GPU Direct Storage
● Reduce Python Overheads

● Improved CUDA Stream Support
● Time Series Support
● Conditional Joins

● Complex Hash Aggregations
● Character Parallel String Algorithms
● Parquet GPU Direct Storage Support

● List, Struct, Dictionary, And Decimal
types and operations

● Expanded GroupBy Operations
● Improved API and Developer Docs

● CUDA 11.2 Support And CUDA
Enhanced Compatibility

● CMake Refactored for easier source
builds

Optimizations New Features Build Infrastructure

● Upgrade to C++17
● CUDA 11.4

33

OPEN SOURCE

CONTRIBUTORS

ADOPTERS

The Rapidly Growing RAPIDS Ecosystem
Supported, Used, & Extended by a Wide Variety of Partners

34

Dask/RAPIDS in HPC

Dask in HPC (Recording) Dask in HEP (Recording)

Supported, Used, and Extended in Research and Academia

https://www.youtube.com/watch?v=WOCgWepvqFk
https://www.youtube.com/watch?v=3bkuTy4I4uo

35

Integration with major cloud providers | Both containers and cloud specific machine instances
Support for Enterprise and HPC Orchestration Layers

Cloud
Dataproc

Deploy RAPIDS Everywhere
Focused on Robust Functionality, Deployment, and User Experience

Azure Machine
Learning

36

How to Get Started with RAPIDS
A Variety of Ways to Get Up & Running

More about RAPIDS Self-Start Resources Discussion & Support
● Learn more at RAPIDS.ai
● Read the API docs
● Check out the RAPIDS blog
● Read the NVIDIA DevBlog

● Get started with RAPIDS
● Deploy on the Cloud today
● Start with Google Colab
● Look at the cheat sheets

● Check the RAPIDS GitHub
● Use the NVIDIA Forums
● Reach out on Slack
● Talk to NVIDIA Services

Keep in touch with us on the Dask Slack workspace: link here

https://rapids.ai/
https://docs.rapids.ai/
https://medium.com/rapids-ai
https://developer.nvidia.com/blog/
https://rapids.ai/start.html
https://rapids.ai/cloud
https://colab.research.google.com/drive/1rY7Ln6rEE1pOlfSHCYOVaqt8OvDO35J0#forceEdit=true&offline=true&sandboxMode=true
https://www.nvidia.com/en-us/ai-data-science/resources/rapids-kit/
https://github.com/rapidsai
https://forums.developer.nvidia.com/c/ai-data-science/86
https://rapids-goai.slack.com/join
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://dask.slack.com/archives/C0228C6L9E0

37

Let’s get started!

