Joint ATLAS-CMS tape test

Alexei Klimentov¹, Mario Lassnig², Xin Zhao¹ Benedikt Maier², Garyfallia (Lisa) Paspalaki³ Fernando Garzon⁴, Felipe Gomez-Cortes²

¹ BNL ² CERN ³ Purdue University ⁴ FNAL

DOMA General, 03/24/2021

Outline

• Introduction

• CMS experience

• ATLAS experience

• Summary

Introduction

- ATLAS and CMS performed joint tape tests on March 2021
 - 3 sites involved (PIC, KIT, IN2P3) 0 ATLAS (staging), CMS (staging and writing; $T0 \rightarrow T1$)

still ongoing, no results today

Goal:

 \cap

- see how far we can stress things, compare results from previous tests (CMS: 2017 tape test; ATLAS : 2020 reprocessing 0 campaign)
- see if there will be any issues if multiple VOs access multi-VO tape sites heavily at the same time, from both VO and site Ο perspective
- For CMS: first tape test after migration to RUCIO (2017 test was using PhEDEx)
- For CMS: transition period: Sites are migrating to new tape systems (Oracle/HPSS to IBM)
- Performing tests with ~250-300 TB of data
- For KIT and PIC the test was performed simultaneously
- Constant monitoring of the test through FTS (also internal monitoring with sites)
- Constant communication between site admins for the test progress

CMS experience

 KIT:
 3 datasets:
 126 / 105 / 95 TB;

 36k / 34k / 34k files

tape technology: Oracle SL8500 library, T10k-D drives, 8 drives available;

PIC: 2 datasets: 206 / 124 TB; 45k / 37k files

tape technology: **Oracle library**, with T10k-C tapes, **8 drives** available; and **IBM library**, LTO7M8 tapes, **6 drives** available)

IN2P3: 4 datasets: 96 / 78 / 73 / 71 TB; 25k / 24k / 15k / 21k files

tape technology: HPSS which provide 45 drives

Submission of test samples followed the same mechanism as in real life / production

1.2 GB/s

754 MB/s

3.56 GB/s

 $T1_MSS \rightarrow T1_Disk$

- KIT succeeded rate:
 - (2017 measurement: 200 MB/s)
- PIC succeeded rate:
- IN2P3 succeeded rate:

ATLAS experience : test setup and status

- T1 tape → T1 disk staging test, not writing (production writing not stopped though)
- already done at <u>KIT</u>, <u>PIC</u> and <u>IN2P3</u>
 - Test sample
 - KIT: 22 datasets (AOD), 280TB, 100k files
 - PIC: 29 datasets (AOD/DAOD), 283TB, 104k files
 - IN2P3: 26 datasets (AOD), 307TB, 125k files
 - Mixed with concurrent production staging and migration requests
- Submission of test sample followed the same mechanism as the production one
 - Follow site-staging-profiles
 - Test sample merged with production requests, together throttled by ProdSys2

ATLAS experience : results and observations

- Commonality in staging process between ATLAS and CMS
 - Both use Rucio/FTS
 - Two sites dynamically allocate tape drives between VOs, while PIC has dedicated drives for each VO
- Site staging profile was broken sometimes
 - Not all ATLAS tape access go through Data Carousel at this moment, for example input for user jobs
- Tape throughput & recall efficiency
 - CMS > ATLAS
 - ATLAS has a mix of test sample + production requests, in the staging
 - CMS files are bigger
 - Different way of submitting bulk staging requests between ATLAS and CMS, on the same site
 - Different tape technologies and drives
- Monitoring
 - A lot of information on FTS/DDM/Rucio dashboards, if one knows what/where to look.
 - \circ $\,$ All sites have tape monitoring, but very few are publicly accessible
 - Lack precise monitoring on tape recall efficiency, at site level

Summary

- Common approach used in tape staging by both ATLAS and CMS (Rucio/FTS)
 - A lot of common ground to work together with, and many improvements are applicable to both sides
- Monitoring is a crucial part
 - Central monitoring for tape activities across VO
 - Rucio team has started to look into building a central place, integrating FTS/Rucio/sites
 - More exposure from site monitoring (only needed for the crucial metrics)
- Site staging profile
 - Already configurable in CRIC
 - Applicable to all VO ? One profile per VO ?
- CMS write test results will be summarized and communicated to ATLAS

Backup

Throttle limit on staging requests at each T1 (ATLAS)

• Defined in CRIC by the <u>site staging profile</u>

Site 🗍	î Type ↓î	State 11	Staging Profiles
BNL-ATLAS	TAPE	ACTIVE	default: max_bulksize=60000, min_bulksize=5000, batchdelay=60
CERN-PROD	TAPE	ACTIVE	default: max_bulksize=100000, min_bulksize=5000, batchdelay=null
FZK-LCG2	TAPE	ACTIVE	default: max_bulksize=30000, min_bulksize=1000, batchdelay=100
IN2P3-CC	TAPE	ACTIVE	default: max_bulksize=10000, min_bulksize=5000, batchdelay=50
INFN-T1	TAPE	ACTIVE	default: max_bulksize=null, min_bulksize=5000, batchdelay=null
NDGF-T1	TAPE	ACTIVE	default: max_bulksize=200000, min_bulksize=5000, batchdelay=null
pic	TAPE	ACTIVE	default: max_bulksize=10000, min_bulksize=5000, batchdelay=50
praguelcg2	TAPE	ACTIVE	
RAL-LCG2	TAPE	ACTIVE	default: max_bulksize=100000, min_bulksize=5000, batchdelay=null
RRC-KI-T1	TAPE	ACTIVE	default: max_bulksize=50000, min_bulksize=5000, batchdelay=null
SARA-MATRIX	TAPE	ACTIVE	default: max_bulksize=20000, min_bulksize=10000, batchdelay=100
TRIUMF-LCG2	TAPE	ACTIVE	default: max_bulksize=100000, min_bulksize=5000, batchdelay=80