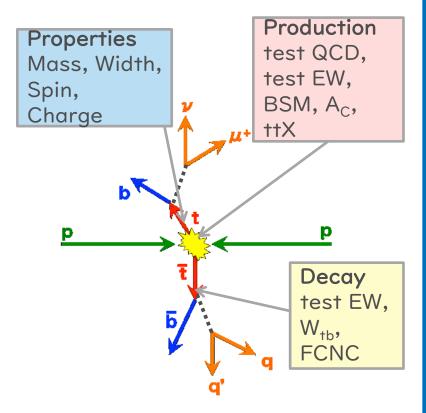
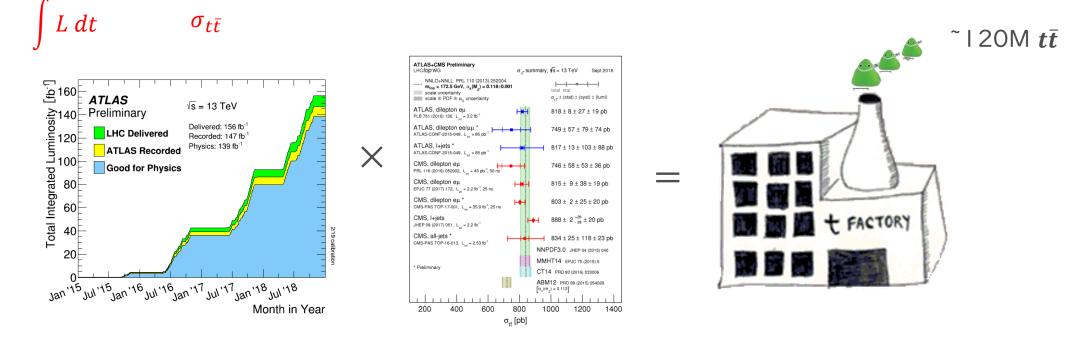
LHC Top+SM

Kentaro Kawade Shinshu University

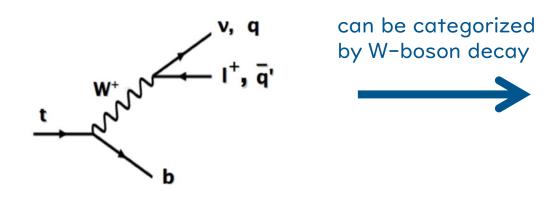

LHC Top+SM K.Kawade

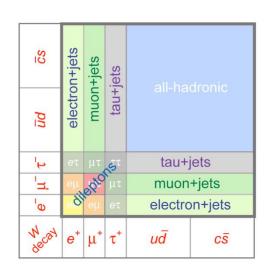
Тор

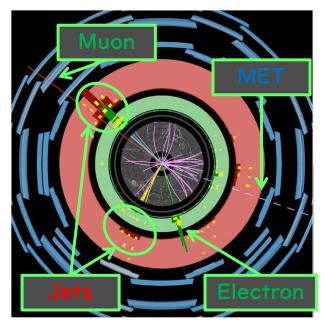

Interests in the Top quark physics

- Top quark?
 - Most massive elementary particle so far discovered
 - with a mass $\sim 1\,73~GeV$
 - strong coupling to Higgs boson
 - many BSM particles strongly couple with top quark
- Studying top quark
 - Precision test of pQCD, EWK
 - Many BSM searches from top production, properties and decay
 - Important background for a lot of LHC searches

LHC is a Top-factory

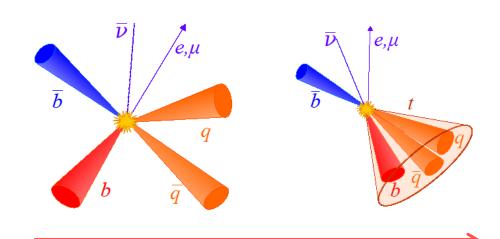

- In the LHC-Run2 (2015-2018)
 - 140 fb⁻¹ × 832 pb ~ 1.2 x 10⁸ $t\bar{t}$ pairs were already produced




- The goal: precision test of SM and BSM searches using huge $t\bar{t}$ sample
 - allow to measure very rare SM processes

Top quark signal

• Top quark decay to W+b ($V_{tb} \sim 1$)

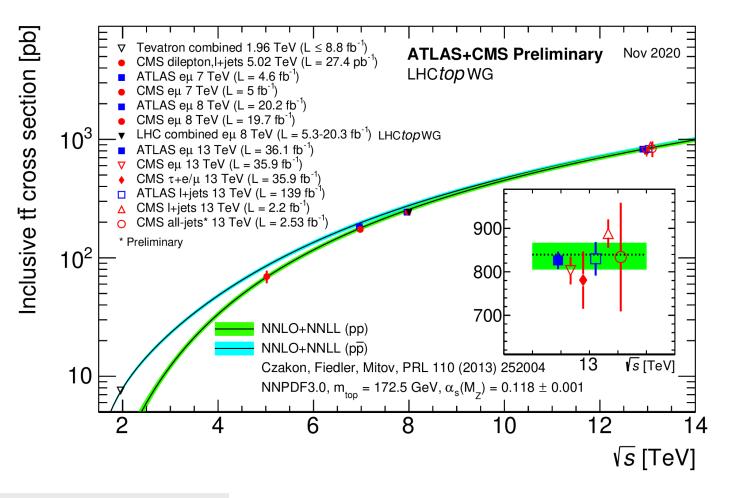

- Final state objects
 - High- p_T leptons or/and quark jets
 - Neutrino

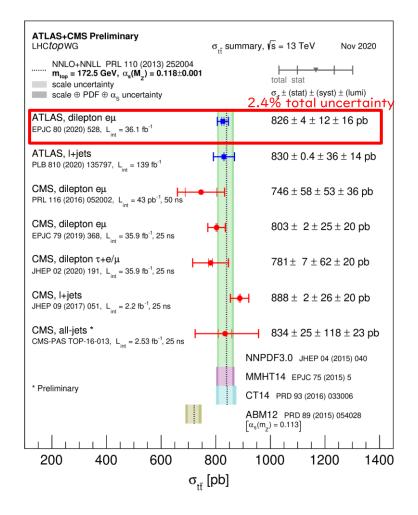
 \Rightarrow Can be detected as large Missing E_T (MET)

- b-jets
 - b-tagging
- Top jet (boosted top)
 - top tagging

Resolved

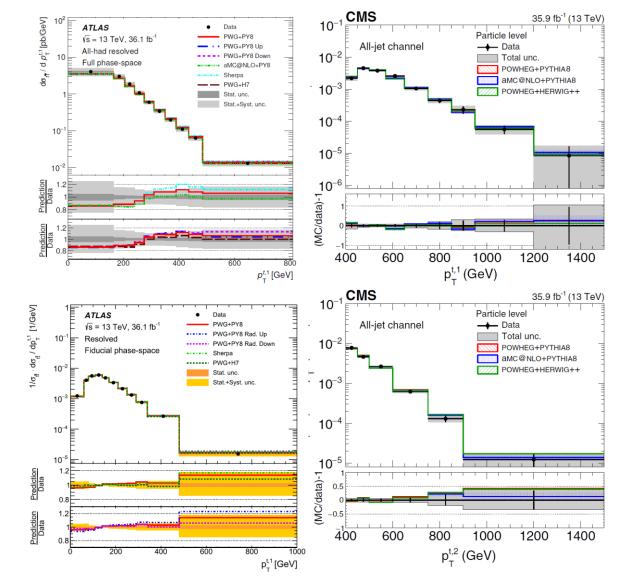
Boosted




production cross-section measurements

$t\bar{t}$ production cross-section measurements

- Can precisely test pQCD
- Measurements have been performed in the various CMS-energy/final-state



2021/5/22

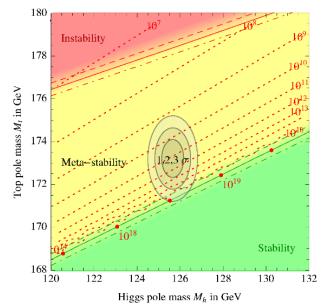
PHYS. REV. D 103, 052008 (2021) Eur. Phys. J. C (2019) 79:1028 JHEP01(2021)033

Differential cross-sections

- Differential cross sections can be used to test SM predictions and MC generators
 - Precision measurements are sensitive to new physics
- A lot of measurement have been performed
- Some tension between data and MC are observed
 - Significant over-prediction of $\sigma_{t\bar{t}}$ at higher p_T^{\dagger} (also N_{jets} and $p_{T,tt}$)
 - Better models are needed to reproduce the data well

top mass and properties

LHC Top+SM K.Kawade



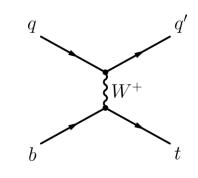
Mass of the top quark

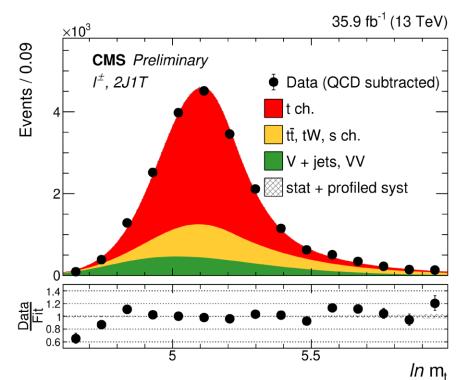
- The measured m_{h} and m_{t} are at the boundary between stable and metastable
 - $\Rightarrow \delta m_h \approx 0.2 \text{ GeV} (\text{Recent LHC status})$
 - m_t measurement is becoming more important
- What is the mass of top quark?
 - MC mass? m_t^{MC}
 - Pole mass? m_t^{pole}
- How to measure them?
 - Direct measurement; m_t^{MC}
 - Reconstruct from top decay objects
 - Indirect measurement; m_t^{pole}
 - Extract from measured cross-section

Jesi om _t	~ 0.5		\un=1	COIII
ATLAS+CMS Preliminary		m _{top} summary, 1	s = 7-13 TeV	April 2021
World comb. (Mar 2014 stat) [2]	total sta	≂ _ at	
total uncertainty		m _{ine} ± total	(stat ± syst)	s Ref.
LHC comb. (Sep 2013) LHC	topwg 🛏 🖬		95 (0.35 ± 0.88)	7 TeV [1]
World comb. (Mar 2014)	1 1 2 1 1	173.34 ± 0.	76 (0.36 ± 0.67)	1.96-7 TeV [
ATLAS, I+jets	File	172.33 ± 1.	27 (0.75 ± 1.02)	7 TeV [3]
ATLAS, dilepton		173.79 ± 1.4	41 (0.54 ± 1.30)	7 TeV [3]
ATLAS, all jets	÷+	175.1±1.8	(1.4 ± 1.2)	7 TeV [4]
ATLAS, single top		172.2 ± 2.1	(0.7 ± 2.0)	8 TeV [5]
ATLAS, dilepton	H	172.99 ± 0.	85 (0.41± 0.74)	8 TeV [6]
ATLAS, all jets		173.72 ± 1.	15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	⊢+ ■ + - 1	172.08 ± 0.9	91 (0.39 ± 0.82)	8 TeV [8]
ATLAS comb. (Oct 2018)	HTH	172.69 ± 0.	48 (0.25 ± 0.41)	7+8 TeV [8]
ATLAS, leptonic invariant mas	ss (*)	174.48 ± 0.	78 (0.40 ± 0.67)	13 TeV [9]
CMS, I+jets	⊢ + • + • +	173.49 ± 1.0	06 (0.43 ± 0.97)	7 TeV [10]
CMS, dilepton	F	172.50 ± 1.	52 (0.43 ± 1.46)	7 TeV [11]
CMS, all jets		173.49 ± 1.4	41 (0.69 ± 1.23)	7 TeV [12]
CMS, I+jets	Hel-I	172.35 ± 0.	51 (0.16 ± 0.48)	8 TeV [13]
CMS, dilepton		172.82 ± 1.3	23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	H+++	172.32 ± 0.	64 (0.25 ± 0.59)	8 TeV [13]
CMS, single top	H		22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	H#H		48 (0.13 ± 0.47)	7+8 TeV [13
CMS, I+jets	H-#-4	172.25 ± 0.0	63 (0.08 ± 0.62)	13 TeV [15
CMS, dilepton		172.33 ± 0.	70 (0.14 ± 0.69)	13 TeV [16]
CMS, all jets	 - + 	172.34 ± 0.1	73 (0.20 ± 0.70)	13 TeV [17]
CMS, single top (*)	H++++	172.13 ± 0.1	77 (0.32 ± 0.70)	13 TeV [18
* Preliminary		 ATLAS-CONF-2013-10 arXiv:1403.4427 FNG 75 (2016) 330 EPJC 75 (2015) 158 ATLAS-CONF-2014-06 PLB 761 (2016) 350 	[8] EPJC 79 (2019) 290 [9] ATLAS-CONF-2019-040 [10] JHEP 12 (2012) 105	[13] PRD 93 (2016) 0 [14] EPJC 77 (2017)
165 170			80	185
	m _{to}	_p [GeV]		
21/5/22				

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} from cross-section measure Se			
total sta	it I	$m_{top} \pm tot \; (stat \pm syst \pm theo)$	Ref.	
σ(tī) inclusive, NNLO+NNLL				
ATLAS, 7+8 TeV	-	172.9 ^{+2.5} -2.6	[1]	
CMS, 7+8 TeV		173.8 +1.7	[2]	
CMS, 13 TeV		169.9 $^{+1.9}_{-2.1}$ (0.1 ± 1.5 $^{+1.2}_{-1.5}$)	[3]	
ATLAS, 13 TeV		173.1 ^{+2.0} -2.1	[4]	
σ(tt+1j) differential, NLO				
ATLAS, 7 TeV 🛏		173.7 $^{+2.3}_{-2.1}$ (1.5 ± 1.4 $^{+1.0}_{-0.5}$)	[5]	
CMS, 8 TeV		169.9 $^{+4.5}_{-3.7}$ (1.1 $^{+2.5}_{-3.1}$ $^{+3.6}_{-1.6}$)	[6]	
ATLAS, 8 TeV		171.1 $^{+1.2}_{-1.0}$ (0.4 \pm 0.9 $^{+0.7}_{-0.3}$)	[7]	
σ(tī) n-differential, NLO				
ATLAS, n=1, 8 TeV	• • • •	173.2 \pm 1.6 (0.9 \pm 0.8 \pm 1.	.2) [8]	
CMS, n=3, 13 TeV		170.9 ± 0.8	[9]	
m _{top} from top quark decay ■ CMS, 7+8 TeV comb. [10] ■ ATLAS, 7+8 TeV comb. [11]	[1] EPJC 74 [2] JHEP 08 [3] EPJC 79 [4] ATLAS-CI	2016) 029 [6] CMS-PAS-TOP-13-006 [10] PRI	:1904.05237 (2019) 0 93 (2016) 072004 IC 79 (2019) 290	
5 160 165 170 m	175 1 ₀₀ [GeV	180 185]	190	

m_t in single top events

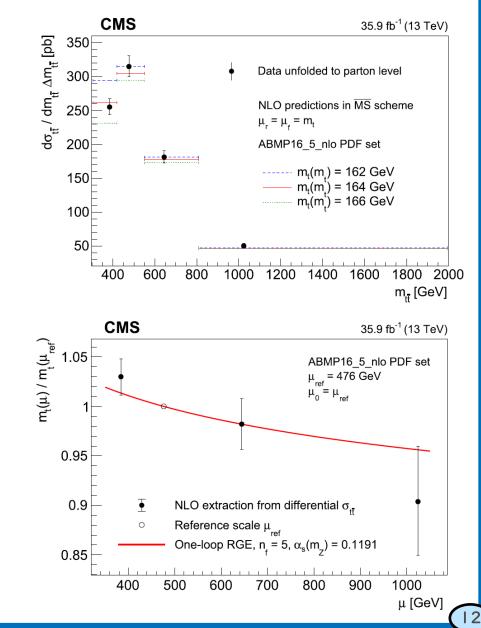

m_t in single top:


- Unique measurement in an independent process
- (partially) Uncorrelated systematics w.r.t. tt measurements
- lepton + jets final state
 - QCD/tt/W+jets background
 → BDT discriminant
- Extraction of top mass
 - *m_t* distribution highly skewed
 → difficult to model accurately using parametric shapes
 - ✓ Use $\ln m_t$ distribution
- Results

$$m_{t} = 172.13 \pm 0.32 \text{ (stat + prof)} ^{+0.69}_{-0.70} \text{ (syst) } \text{GeV} = 172.13 ^{+0.76}_{-0.77} \text{ GeV}$$

$$m_{t} = 172.62 \pm 0.37 \text{ (stat + prof)} ^{+0.97}_{-0.65} \text{ (syst) } \text{GeV} = 172.62 ^{+1.04}_{-0.75} \text{ GeV}$$

$$m_{\tilde{t}} = 171.79 \pm 0.58 \text{ (stat + prof)} ^{+1.32}_{-1.39} \text{ (syst) } \text{GeV} = 171.79 ^{+1.44}_{-1.51} \text{ GeV}$$

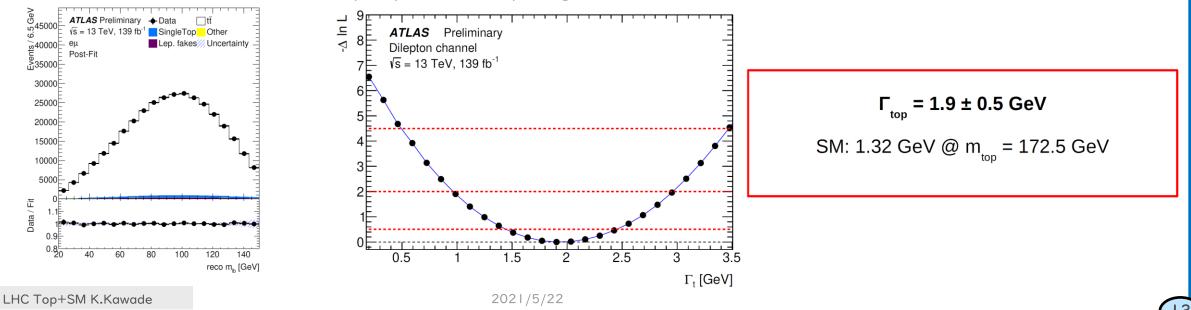

Running of the top quark mass

In $\overline{\rm MS}$ scheme, the value of m_t depends on energy scale ($\propto m_{tt})$

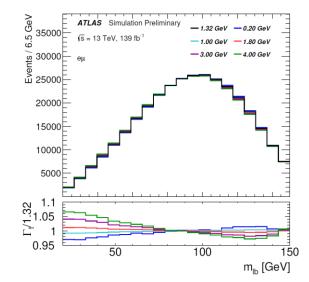
– Like α_s

 \rightarrow running of $m_t(\mu_m)$ $\mu^2 \frac{\mathrm{d}m(\mu)}{\mathrm{d}\mu^2} = -\gamma(\alpha_S(\mu)) m(\mu),$

- Differential cross section as a function of m_{tt}
- Running factor extracted by comparing to NLO predictions
- The extracted running is found to be compatible with the scale dependence
 - no-running hypothesis is excluded at 95% C.L.
- The running is probed up to ~ITeV

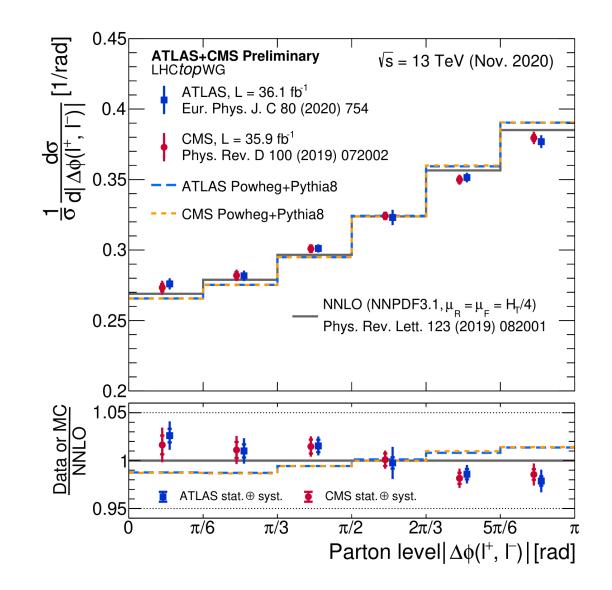

ATLAS-CONF-2019-038

Top decay width

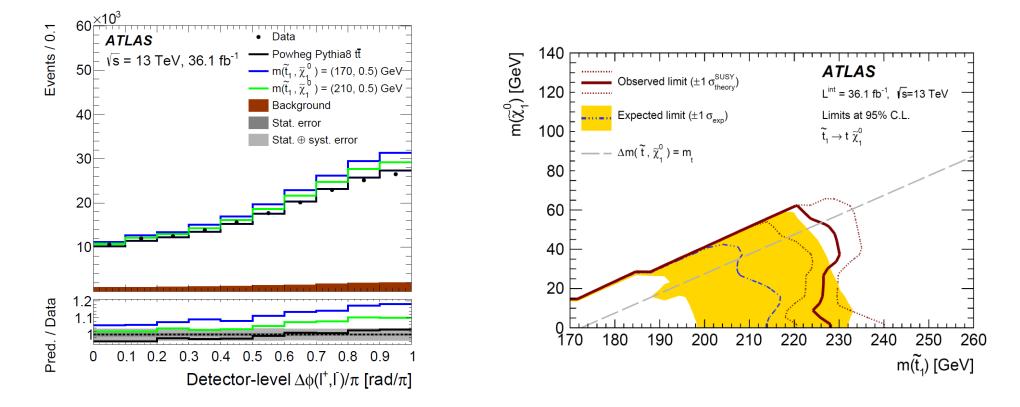

- Top decay width; One of the fundamental properties of the top quark
 - Direct measurement from m_{lb}
 m_{lb}: Invariant mass of charged lepton and bottom quark in top decays

 \Leftrightarrow Indirect measurement: $\Gamma_t = 1.36 \pm 0.02(\text{stat})^{+0.14}_{-0.11}(\text{syst})$ GeV

- Could hint
 - non-SM decay channels of the top quark
 - modification of top-quark couplings



W⁺

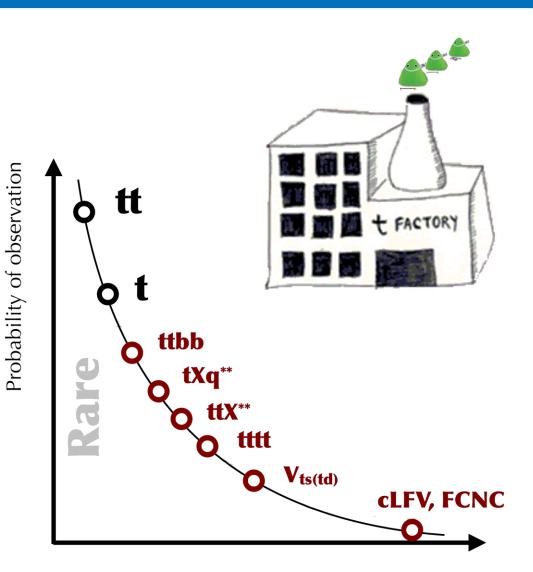

$t\bar{t}$ spin correlations

- top-quark pairs should be produced without polarization, while spin of t and \overline{t} are correlated \rightarrow Charged leptons carry full spin information $(a_{\ell} \sim 1)$
- dilepton (*eµ* or *eµ / µµ / ee*) channel is used
 - Angle between the leptons is sensitive to spin correlations
- Results are unfolded to both the partonlevel
- MC and NNLO predictions does not much to the data

SUSY interpretation: $t\bar{t}$ spin correlations

- A search is performed for stop pair decaying into SM top quarks and light neutralinos
- Top squarks with masses between 170 and 230 GeV are excluded for most kinematically allowed neutralino mass

Rare top quark processes



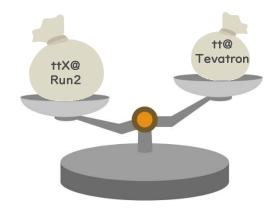
SM rare process

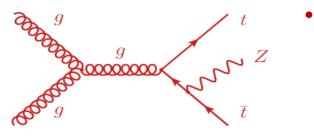
- Is the SM still correct in extreme phase space?
 - Can be tested in rare SM process

Ex)

- $t\bar{t}bb, t\bar{t}X, t\bar{t}t\bar{t}$
 - Very rare SM processes
 - Can be measured thanks to huge LHC data
 - Important backgrounds for future BSM searches
- FCNC
 - Not sensitive at the LHC
 - If BSM exist, possible enhance

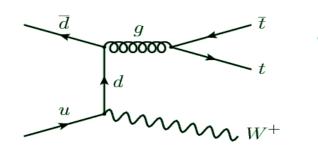
Phys. Rev. D 99, 072009

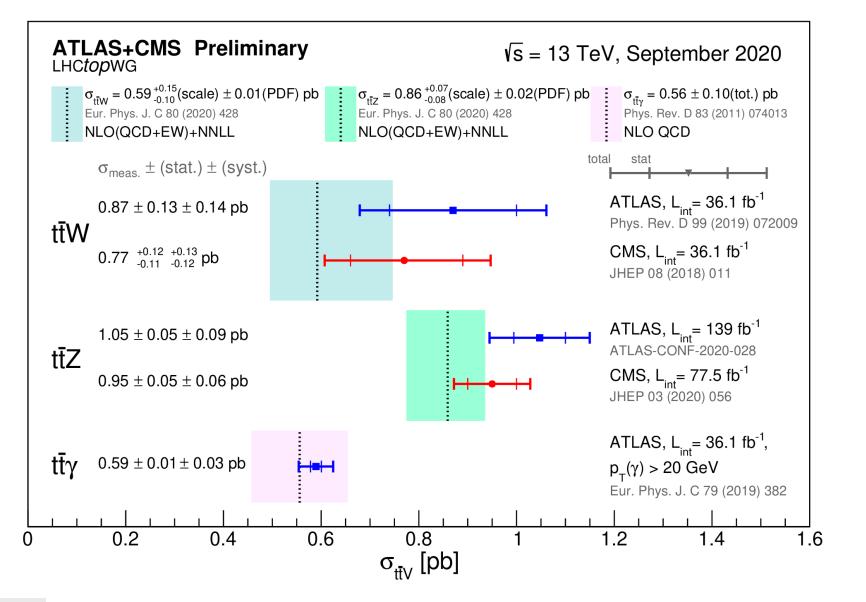

 $C_V^{SM} = T^3 - 2Q_t \sin^2(\theta_W)$


 $\gamma^{\mu}(C_V^{SM} - \gamma_5 C_A^{SM})$

 $C_A^{SM} = T^3$

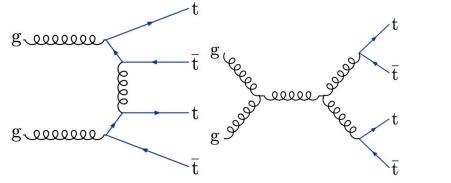
tt+X production


- Associate production with Vector bosons or photon
 - − very rare σ_{ttX}^{SM} < 1 pb (⇔ σ_{tt}^{SM} ~1 nb)
 - LHC has more ttX than tt at Tevatron
 - important to ttH, VLQ, SUSY searches

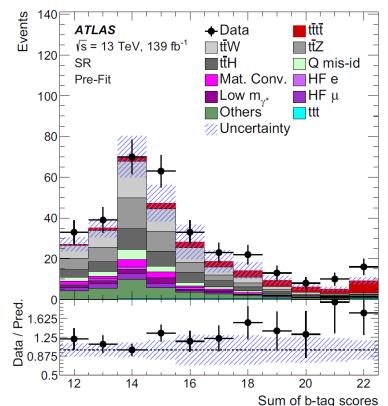

tt+Z

- Sensitive neutral current coupling between t and Z
- Sensitive EFT operator related to tZ coupling
- BSM can alter cross-section
- $++\gamma$
 - Sensitive to t γ electroweak coupling
- +++W
 - Having Same sign lepton pair final state
 - Very rare for SM processes
 - Important final state in the many BSM searches

Status of tt+X


LHC Top+SM K.Kawade

2021/5/22

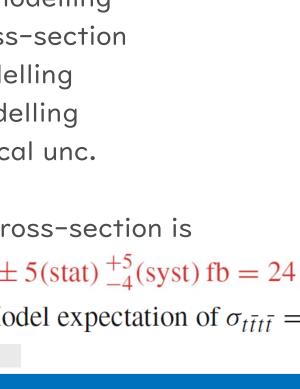

Four tops; *ttttt*

- $\sigma_{\rm SM}^{t\bar{t}t\bar{t}} \sim 12 \text{ fb} \rightarrow \text{Extremely rare process}$
 - CP properties of the Yukawa coupling
 - Many BSM enhance four tops

- Event selection
 - Same-sign lepton pair and at least three leptons
 - Single lepton and opposite-sign dilepton
 - Look for many jets and b-jets signal
 - BDT employed to separate signal and backgrounds
 - ex) Jet multiplicity, jet flavor and event kinematics

Eur. Phys. J. C (2020) 80:1085 ATLAS-CONF-2021-013

gluino



Results; *tttt*

- Signal and backgrounds normalizations are determined by likelihood fit
 - to the BDT
- Uncertainties
 - Signal modelling
 - cross-section
 - modelling
 - ttW modelling
 - Statistical unc.
- Measured cross-section is

 $\sigma_{t\bar{t}t\bar{t}} = 24 \pm 5(\text{stat}) {}^{+5}_{-4}(\text{syst}) \text{ fb} = 24 {}^{+7}_{-6} \text{ fb}.$

Standard Model expectation of $\sigma_{t\bar{t}t\bar{t}} = 12.0 \pm 2.4$ fb.

Events / 0.1

10³

 10^{2}

10

Data / Pred.

ATLAS

Post-Fit

-0.6

2021/5/22

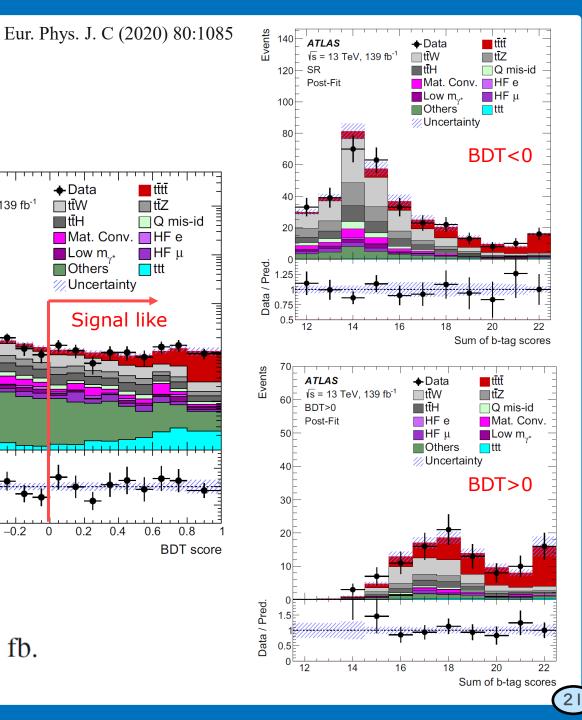
-0.4

-0.2

0

SR

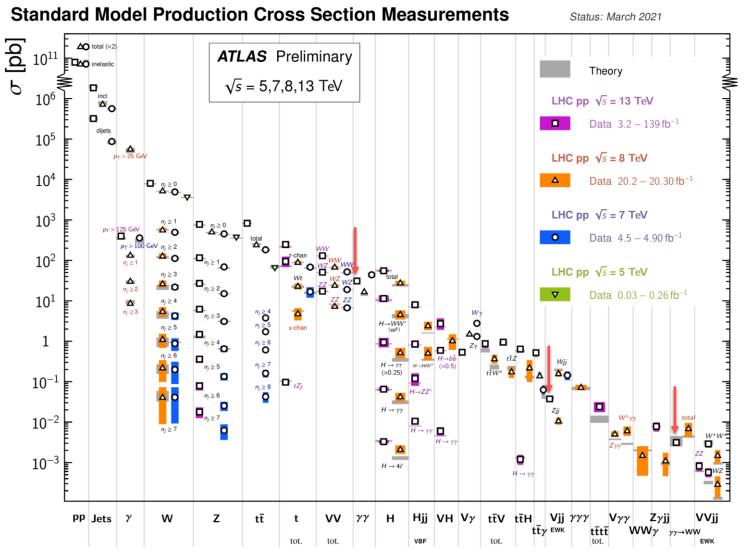
Data

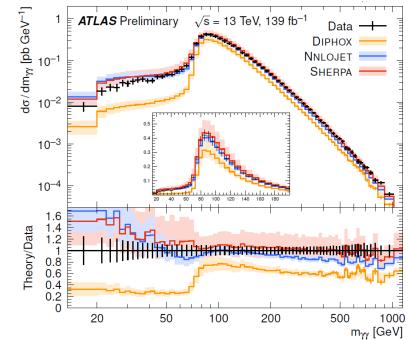

Low m_{u*}

Others

0.2

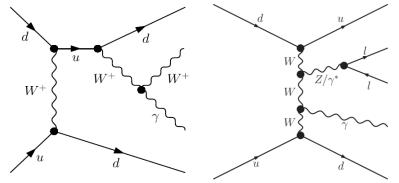
∏tŧW


■ttH

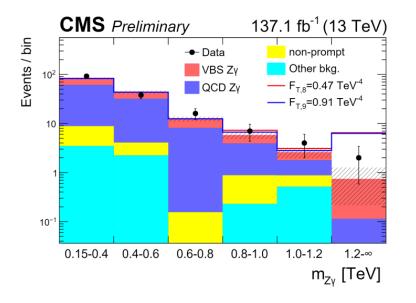

Standard model

Standard model measurements

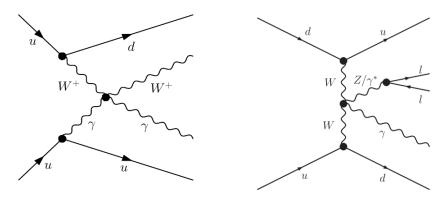
- Various SM cross-section measurement have been performed
- SM can describe the experimental results in the wider region !
- Differential cross-sections



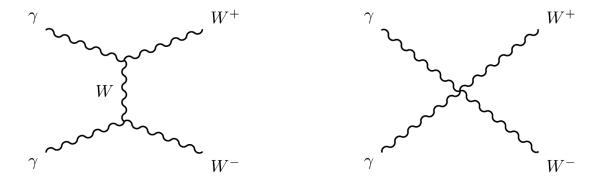
LHC Top+SM K.Kawade


23


24


$V\gamma$ scattering

Triple gauge coupling



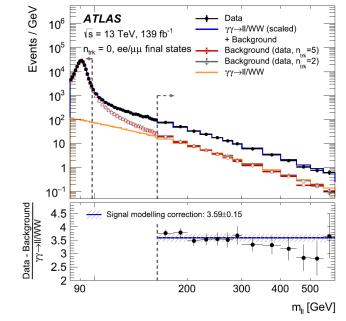
Quartic gauge coupling

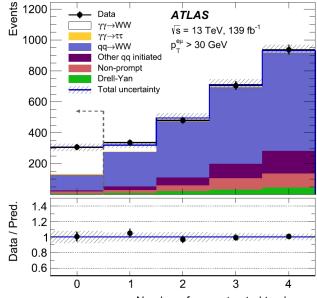
- Sensitive to QGCs pr aQCGs
 - VV and H more sensitive to TGCs
- In good agreement with recent theoretical predictions
- Constraints on anomalous couplings

Large Photon Collider : $\gamma\gamma \rightarrow WW$ process

• LHC is also the "Large Photon Collider"

- $\gamma\gamma \to WW$
 - Sensitive to trilinear and quartic γ +W couplings
 - Also sensitive to the BSM
- Keys
 - Separation from QCD events (incl. pp→WW production)
 → Charged track multiplicity
 - Initial parton interaction not included in the simulation
 - Only elastic scattering is modeled
 - \rightarrow Data driven correction


Cross-section measurement


- Data/MC correction using "Same Flavour CRs"
 - $\gamma \gamma \rightarrow \ell \ell$: Independent to $\gamma \gamma \rightarrow WW$ (~1%)
 - Derived correction factor

 3.59 ± 0.15 (exp.) ± 0.39 (trans.)

- Background templates from higher $n_{\rm trk}$ regions
- Separated by number of tracks
 - 0 track: Signal region
 - I or more tracks: Control region

	Signal region		Control regions	5
<i>n</i> _{trk}	$n_{\rm trk} = 0$		$1 \le n_{\mathrm{trk}} \le 4$	
$p_{\mathrm{T}}^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	< 30 GeV
$\gamma \gamma \to WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma \gamma \rightarrow \ell \ell$ Drell–Yan $qq \rightarrow WW$ (incl. gg and VBS) Non-prompt Other backgrounds	$\begin{array}{l} 5.5 \pm 0.3 \\ 4.5 \pm 0.9 \\ 101 \pm 17 \\ 14 \pm 14 \\ 7.1 \pm 1.7 \end{array}$	$\begin{array}{r} 39.6 \pm 1.9 \\ 280 \pm 40 \\ 55 \pm 10 \\ 36 \pm 35 \\ 1.9 \pm 0.4 \end{array}$	5.6 ± 1.2 106 ± 19 1700 ± 270 220 ± 220 311 ± 76	32 ± 7 4700 ± 400 970 ± 150 500 ± 400 81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

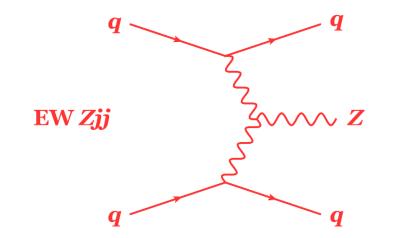
Number of reconstructed tracks, n

LHC Top+SM K.Kawade

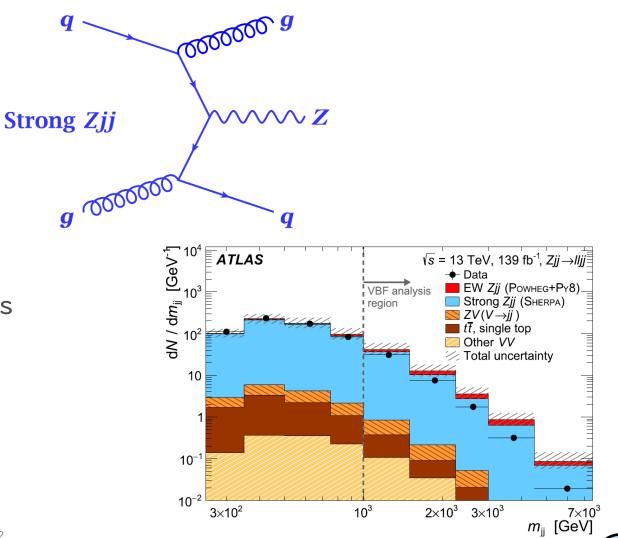
2021/5/22

Results

- $p_{\mathrm{T}}^{e\mu}$ distributions in good agreement with observed data
 - 8.4 σ observation

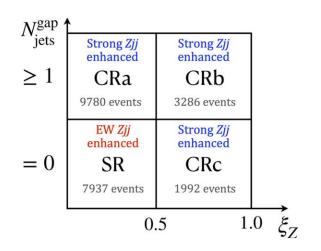

Measured cross section

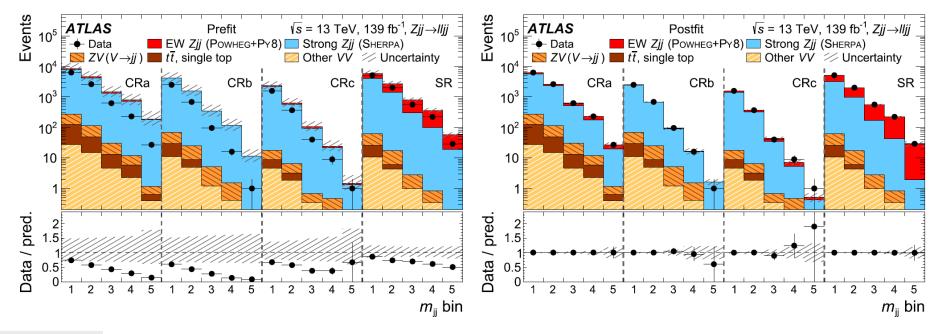
 $\sigma_{\text{meas}} = 3.13 \pm 0.31 \,(\text{stat.}) \pm 0.28 \,(\text{syst.}) \,\text{fb}$ $\sigma_{\text{theo}} \times (3.59 \pm 0.15 \,(\text{exp.}) \pm 0.39 \,(\text{trans.})) = 2.34 \pm 0.27 \,\text{fb}$



• Very sensitive to the VBF production mechanism

- m_{jj} : Invariant mass of two reading jets
- N^{Gap}_{jets}: Jets in the rapidity interval between the 1st and 2nd jets
- $\xi_Z = |y_{\ell\ell} 0.5(y_{j1} + y_{j2})| / |\Delta y_{jj}|$: Z-boson centrally produced wrt dijet

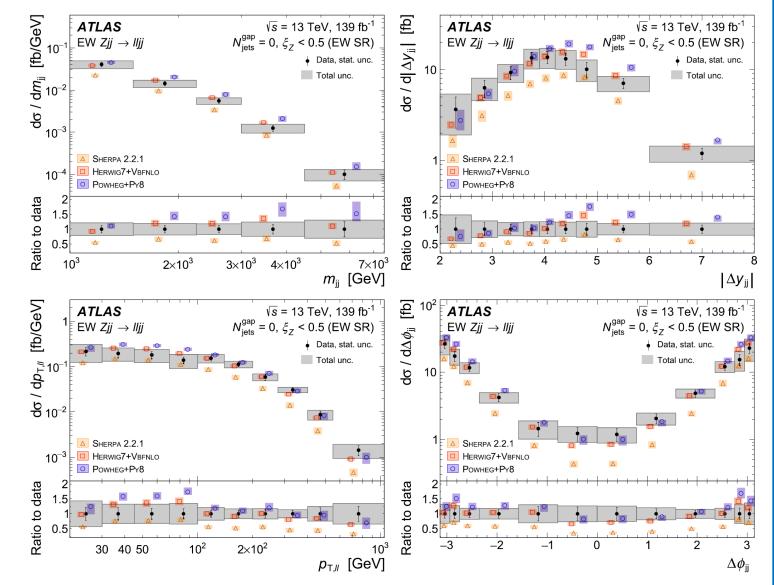



Eur. Phys. J. C (2021) 81:163

Extraction of EW Zjj production

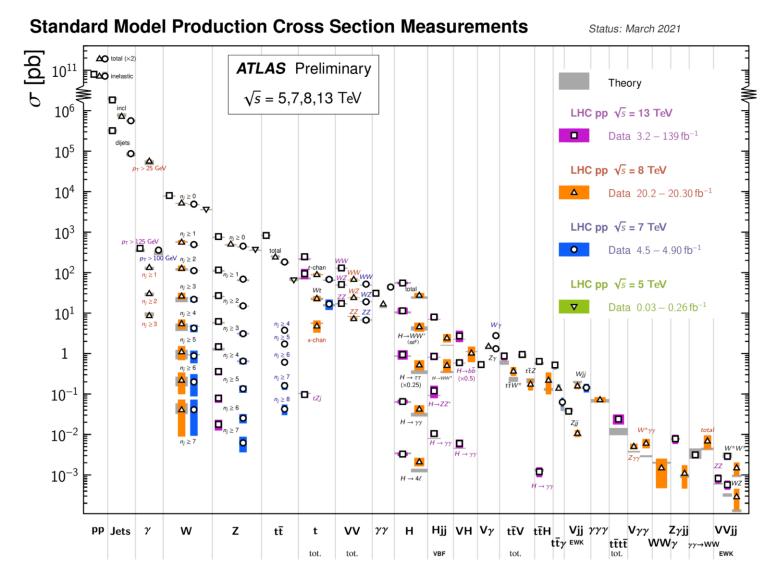
- Poor agreement between data and simulation
 → Data driven background estimation (Shape + Normalization)
- Unfold to particle level
 - Iterative Bayesian unfolding
- Fiducial cross-sections are measured to be

 $\sigma_{\rm EW} = 37.4 \pm 3.5 \,({\rm stat}) \pm 5.5 \,({\rm syst}) \,\,{\rm fb}.$



2021/5/22

Differential cross sections


- HERWIG7+VBFNLO
 - reasonable agreement with the data
- POWHEG+PY8
 - overestimation at high m_{jj} , high $|\Delta y_{jj}|$, and intermediate $p_{T,ll}$
- SHERPA
 - Significant underestimate

Summary

- Various SM+top quark measurements have been performed
 - Only small part are showed in this talk…
- SM still powerful to describe production in the wider range
- Systematics already became dominant uncertainties
 - Improve modellings
 - Improve analysis
- A lot of ongoing analyses

 → Stay tuned !!

