
CMS Rucio Consistency
Igor Mandrichenko, Stefan Piperov, Eric Vaandering
Rucio meeting, April 8 2021

Purpose
To make sure Rucio database accurately
reflects actual state of RSEs by comparing
replica list in the DB and fund in the RSE

Missing replicas:

replicas which are expected to be
found in the RSE, but are not

Need to be re-replicated

Dark replicas:

Replicas which are not supposed to be
in the RSE

Occupy space

Need to be deleted

Rucio Consistency
Consistency Checking
produce dark and missing
lists and feed them back to
Rucio

Mostly done by the Auditor
daemon

Difficulties
Neither site dump nor the database dump can represent a consistent snapshot

● Take minutes to hours to produce
● Done at different times
● Both database and site state constantly change

3-way comparison
1. List files in DB -> set “B” (before)
2. Scan RSE -> set “R”
3. List files in DB again -> set “A” (after)

Dark = R - (A+B)

Missing = (A*B) - R

Inconsistencies of both kinds guaranteed
to be discovered eventually

CMS motivation to change things
CMS has traditionally done this checking in a very different way from ATLAS

Rather than rely on sites to supply snapshots of storage over time (tried), CMS
centrally uses xrootd to scan sites

Built on our heavy use of xrootd (AAA) to make any file accessible
 anywhere

Instead of using the Auditor as is, integrated into
Rucio, we’ve broken it down into pieces which can
be treated as a “toolbox” outside of Rucio to check
consistency (and extended for new/other uses)

Dark
Action

Comparison

Database
Snapshot

xrootd
Scan

Missing
ActionMonitoring

Filesystem
Snapshot

CMS Consistency Architecture

“Standard” xrootd-scannable RSE

CMS Consistency Architecture

Non-scannable RSE

Files are big !
File lists (B, R, A) can get large, up to ~10GB

● 100M files * 100 bytes/file = 10GB

Straightforward approach:

● Sort each list, then compare line-by-line
● Sorting takes a lot of time*memory

● Either try to sort in memory - faster but need up to 10GB of memory
● Or sort using disk as the buffer - slow

Partitioning
Instead of sorting/comparing entire lists:

● Split B,R,A lists into multiple files
● Use common hash function to send

each file path to its own partition
100MB-1GB size
○ part_inx = hash(path) % N

● Compare each partition separately in
memory
○ B0, R0, A0 -> D0, M0

○ B1, R1, A1 -> D1, M1

○ …
● Only one of the 3 lists needs to be held

in memory, 2 others are scanned line
by line

Tools: xrootd_scanner.py
● Operates on single RSE

○ Xrootd server host/port
○ List of directories to scan

● Uses “xrdfs ls” spawning shell subprocess
● Spawns multiple subprocesses to scan in parallel (configurable)
● Tries to scan recursively first (xrdfs ls -R) and non-recursively as the fall-back
● Configurable on per/RSE basis with defaults
● Converts physical paths to LFNs (configurable)
● Produces partitioned R list

Tools: db_dump.py
● Reads Rucio database replicas table to find all “active” replicas for the RSE
● Uses SQL Alchemy
● Produces partitioned list of LFNs (B and A)

Tools: cmp3.py
● Compares 3 partitioned lists (B0, B1, B1, …, BN), (R0, R1, R1, …, RN), (A0, A1, A1, …, AN)
● Produces 2 files

○ Dark list
○ Missing list

Tools: partition.py
● Can be used to partition a single file or re-partition a partitioned list
● Has some line filtering/editing capabilities (regular expressions)
● Can be used to partition site dump produced by “non standard” sites, which can

not be scanned by the xrootd scanner (RAL, CTA, etc.)

Web GUI Monitor

https://cmsweb-k8s-prod.cern.ch/rucioconmon/index

Actions
We rely on existing Rucio methods to perform the actions on dark/missing replicas.

● add_quarantined_replicas() to delete dark files using the Dark Reaper;
● declare_bad_file_replicas() to re-transfer the missing replicas;

The plan is to encapsulate the whole functionality of deleting/re-transferring the
dark/missing files in a separate daemon, which will be using the output files from
the scanner and 3-way comparison for all RSEs.

We want to be safe in the automated deletions, so

○ Perhaps we should check that a file shows up as ‘dark’ in two consecutive scans before deleting.
○ And the file has to be sufficiently old (a month?), to avoid acting on transient files.

Future
● Continue development of the part, which acts on the findings

○ What to do with dark files? Are we brave enough to automatically delete them?
○ Gray files - files which are legitimately in storage already but have not been declared to Rucio yet
○ Non-standard sites (not xrootd-friendly)
○ RAL
○ CTA
○ The set of tools we have seems to work well so far

● Right now this code exists in our own repos but we would like to contribute it to
the Rucio project

● We are still testing in the integration deployment. When we gain sufficient
confidence that everything works as expected we’ll start using it in production.

