Unsolved Physics Problems

Chakrit Pongkitivanichkul Khon Kaen University

โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 25 มีนาคม 2564

UNKNOWN

KNOWN

UNKNOWN to humankind

UNKNOWN to humankind

Greek Philosophers

An early attempt to understand nature Objects rise and fall to their **natural places**

Natural motion vs Forced motion

Objects in <u>a void (vacuum)</u> move in the **natural direction** Objects in **unnatural motion** will return to their **natural courses** when <u>the force is</u> <u>removed</u>

Philosophy vs Science

There were so many thinkers in the past whose came very close to our <u>current understanding</u>

Deduction from logic and observation sounds reasonable

But this is not good enough for science!!!

The birth of modern scientific theory

What made Newton's idea different was the invention of calculus!

Theoretical questions can be answered by measurement

Experiments and measurement leads to informative evidence \rightarrow <u>confirm</u> <u>theory and give predictions</u>

Scientific theory is universal and testable

dx dx

Scientific theory

Theory with no way to test it $\rightarrow \times$ not a scientific theory

Theory from logic and observations but no quantitative measurement and prediction $\rightarrow \times$ better but still not a scientific theory

Theory with solid mathematical model which gives prediction that can be tested by experiments and measurements $\rightarrow \checkmark$ Scientific theory

A solid mathematical model which gives prediction that can be tested by experiments and measurements but no good interpretation $\rightarrow \checkmark$ Still scientific theory

Solved vs Unsolved

If the scientific theory gives predictions that agree with all measurements at the moment \rightarrow solved problem

New evidence that does not agree with known scientific theory → unsolved problem

We cannot prove scientific theory right We can only prove scientific theory wrong

Light is a <u>wave</u> → interference, diffraction, reflection

Particles can also be wave

Which *path* does electron take?

Left path?

Right path?

□;→

Which *path* does electron take?

Which *path* does electron take?

Left path? X Right path? X No path? X

Both paths?

Electron takes **both paths** (quantum state) → **superposition principle** The state collapses when measured → **uncertainty principle** The theory is <u>open for interpretation before measurement</u> As long as the theory gives predictions and testable → scientific theory!! **There is no experiment yet that contradicts with quantum theory**

Long distance force

Action at a distance is strange

What exactly **<u>communicates</u>** between two objects

Electromagnetic Field

We use "field" to describe force

Field = an entity that has value **everywhere** and can change in **time**

Is electromagnetic field even real?

Is electromagnetic field even real?

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

Equations for wave → speed of light Oscillation of field → light Yes!! → The electromagnetic field is real

What about gravitational field?

Classical Mechanics is based on the definition of an inertial frame

Free from gravitational force? 🗙

Einstein's happiest thought

Free fall = inertial frame

Free fall = **local** inertial frame

General Relativity

Inertial frame = flat space → **curve space** = locally flat space

General Relativity

Spacetime is not a coordinate → It is a **field** (fabric of the universe)

GR tests

Is this idea testable?

GR tests

Is this idea testable?

What is the universe made of?

Everything is made of <u>atom</u> \rightarrow <u>electrons</u>, neutrons, <u>protons</u> \rightarrow <u>quarks</u>

But a particle is not a good concept!!

Energy *₹* Matter

Einstein's Theory of Relativity (Special Relativity)

The number of **particles** is not conserved High Energy Physics needs a **new concept**...

Quantum Field Theory

Quantum Field Theory

Standard Model of Particle Physics

Standard Model Tests

Wait for this afternoon!!!

Dark Matter

$$\frac{mv^2}{r} = \frac{GM(r)m}{r^2}$$
$$v = \sqrt{\frac{GM(r)}{r}}$$

Dark Matter

What is dark matter particle?

Where is the dark matter?

Only gravitational effect has been observed

No standard model particle is a good fit

Not yet solved!

Einstein's biggest blunder

We chose to believe that our universe is always static

But the gravity is pulling stuff together

Einstein introduce the "push" → Cosmological constant

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

The universe is expanding \rightarrow Big Bang

We can measure the speed and distance of galaxies

There is no need for a force (Λ) that pushing out

Universe is accelerating

Cosmological constant coming back!

Where does this come from? Quantum field theory?

Vacuum is not empty

Unification dream?

Different phenomena described by different theories tend to unified under the same theory

Unification dream?

Electromagnetic + Weak nuclear interaction

(Quantum Electrodynamics + weak interaction)

Electroweak theory

Grand Unified Theory?

Can electroweak combine with strong nuclear force?

Not yet solved!

Can proton decays?

Neutron is heavier than proton $n \to p + e^- + \overline{\nu}_e$

If a new force exists then proton can decay $p \rightarrow \pi^0 + e^+$

Can proton decays?

Experiments put the lifetime $\gtrsim 10^{34}$ years

Lifetime of our universe $\sim 10^{10}$ years

Not yet solved!

Neutrino oscillation

Producing electron neutrino → changing type as it travels

Electron neutrino is composed of 3 different neutrinos which travels with different speed

Neutrino oscillation

Neutrinos have no mass in the standard model

Massive spin ¹/₂ particle has 2 components

Standard model has only left-handed neutrinos

New component of neutrino must be there

Not yet solved!

There are many more

Naturalness problem, black hole information paradox, muon g-2 anomaly, lepton flavour anomaly, ...

KKPaCT

Khon Kaen Particle Physics and Cosmology Theory Group

Our Research Topics:

Theoretical Physics, High Energy Physics, Particle Physics, Cosmology, Hadron Physics We need more hands -- please don't hesitate to contact us

