Perceiving the Emergence of Hadron Mass through AMBER@CERN

27 April to 30 April 2021 CERN, Geneve - Switzerland

Probing the pion's parton structure with AMBER (Phase-1 experiments)

Stephane Platchkov, Apr. 27, 2021 (On behalf of the AMBER collaboration)

S. Platchkov

EHM-V, April 2021

- ◆ Three main advantages of CERN + COMPASS:
 - 1) mesons beams (Amber phase-1: pions, later: kaons)
 - 2) both positive and negative very important!
 - 3) Large and uniform acceptance spectrometer

Only place in the world!

- Three main physics goals of AMBER phase-1:
 - 1) Separate valence and sea pion PDFs
 - 2) Access gluon distribution in the pion using J/ ψ and ψ ' production and
 - 3) Study the flavor dependence of the nuclear mean field

Fall 2020: official approval by SPSC!

Goal #1:

Separate valence and sea contributions in the pion

Properties of the lightest mesons (pion and kaon)

- ♦ Light meson properties
 - How the (simplest) light mesons compare to the nucleon?

M (MeV):938135493Rch (fm):0.841(2)0.659(4)0.560(31)

- Help understanding the emergence of hadron masses
 - Higgs mechanism can't explain hadron masses
 - EHM: explain the heavy nucleon and the light pion
 - Meson PDFs: Important input

Chang, Peng, SP, Sawada. PRD 102, 054024 (2020).

Valence: must be checked and improved. Sea and gluons: nearly unknown

N. Cao, P. Barry, N. Sato, and W. Melnitchouk, arXiv:2103.02159 (2021).

 q_v^{π}

0.1 0.3 0.5 0.7 0.9

x

global fit (JAM21)

0.5

0.4

 $(x)_{\mu}^{0.3}(x)_{\mu}^{0.3}(x)$

0.1

First multidimensional global fit by JAM21

(March 2021)

 $\mu^2 = 10 \text{ GeV}^2$

0.01

0.01

0.1

x

0.1

x

0.3

0.3

Z. Fan and H-W. Lin, arXiv:2104.06372 (2021).

gluons

0.5

0.4

 $(x)_{\mu}^{0.3}_{\mu}fx^{0.2}$

0.1

JAM

xFitter

GRV

0.01

 q_s^π

0.5

0.5

 $g^{\pi}/10$

S. Platchkov

The available π^+ statistics will be increased to $\geq 20\ 000$

Pion sea/valence : the only available results (NA3, 1983)

- Only measurement: NA3 (π^{-}/π^{+} on a ¹⁹⁵Pt target)
 - π⁻: 200 GeV (4.7k)
 - π + : 200 GeV (1.7k)
 - ► Insufficient statistics!

- Requirements for a new measurement
 - Beams of π^- and π^+
 - Good control of $\sigma(abs)$ normalization
 - Statistics: \geq order of magnitude !

Badier et al., Z.Phys. C18, 281 (1983).

Drell-Yan: available data and expected statistics

Table 7: Statistics collected by earlier experiments (top rows), compared with the achievable statistics of the proposed experiment (bottom rows), in 213 days (π^+ beam) + 67 days (π^- beam).

Amber advantages

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c ²)	DY events
E615	20 cm W	252	$\pi^+ \pi^-$	17.6×10^{7} 18.6×10^{7}	4.05 - 8.55	5000 30000
NA3	30 cm H ₂	200	π^+ π^-	2.0×10^{7} 3.0×10^{7}	4.1 - 8.5	40 121
	6 cm Pt	200	π^+ π^-	2.0×10^{7} 3.0×10^{7}	4.2 - 8.5	1767 4961
	120 cm D ₂	286 140	π^{-}	65×10^7	4.2 - 8.5 4.35 - 8.5	7800 3200
NA10	12 cm W	286 194 140	π^-	65×10^{7}	4.2 - 8.5 4.07 - 8.5 4.35 - 8.5	49600 155000 29300
COMPASS 2015 COMPASS 2018	$110\mathrm{cm}\mathrm{NH}_3$	190	π^-	7.0×10^{7}	4.3 - 8.5	35000 52000
This exp	75 cm C	190	π^+	1.7×10^{7}	4.3 - 8.5 4.0 - 8.5	21700 31000
		190	π^{-}	6.8×10^7	4.3 - 8.5 4.0 - 8.5	67000 91100
	12 cm W	190	π^+	0.4×10^7	4.3 - 8.5 4.0 - 8.5	8300 11700
		190	π^{-}	1.6×10^{7}	4.3 - 8.5	24100

✓ ¹²C (3 x 25 cm) target
− control reinteraction

- Improvement in statistics:
 π-: x 19
 - $\pi + : x \ 18$

4.0 - 8.5

Expected results, emphasizing valence/sea separation

Goal #2:

Access the gluons in the pion using charmonium production

- Extremely attractive observable, linked to the gluon distribution
 - J/ψ has large cross sections: factor of 30-50 larger than Drell-Yan
 - AMBER will measure x_F , p_T , λ distributions with huge statistics (> 1 M events)
 - Fixed target energies: production is dominated by 2 --> 1 process
 - AMBER@CERN: simultaneous measurements of (π^+ and p) and π^-
 - No new FT data since two decades!

- ◆ However!
 - The J/ ψ production mechanism is not well known
 - Fixed-target energies: $p_T \leq M(J/\psi)$; for LHC $p_T >> M(J/\psi)$;
 - Additional effects may contribute

The two global fits provide different PDFs: valence, gluon, sea

NLO CEM calculation for a H_2 target (NA3)

- NLO CEM calculation for J/ψ cross section
 - pion beam, E = 200 GeV
 - Target = Hydrogen
- 4 different pion PDFs:
 - SMRS, GRV, xFitter, JAM

Chang, Pen, SP, Sawada, Phys.Rev. D102,054024(2020)

Result: very different magnitudes of the $q\bar{q}$ and gg contributions

EHM-V, April 2021

Polarization

- J/ ψ is a 1⁻⁻ particle; its third component is J_z = 0,+1, -1.
 - $\alpha = +1$: 100% transverse polarization (J_z = ± 1)
 - α = 0 : unpolarized
 - α = -1 : 100% longitudinal polarization (J_z = 0)

$$\frac{d\sigma}{d(\cos\theta)} \propto 1 + \alpha \cos^2\theta,$$

- Polarization is a fundamental observable
 - angular momentum, chirality, parity conservations preserve the properties of the J/ ψ : from production to the 2µ decay
 - Nature wants to help us, for $q\bar{q}: \alpha \simeq +1$, but for $gg: \alpha \simeq -1$
 - Key variable for understanding the bound state formation

- with minimal model-dependence $\lambda_{\vartheta}^{CS} \approx +0.4 \text{ for } q \overline{q}$ $\lambda_{\vartheta}^{CS} \approx -0.6 \text{ for } g g$
- The difference between the two predictions results from the different amount of qq and gg contributions as a function of x_F.

The polarization value as a function of x_F is sensitive to the shape differences between gg and $q\bar{q}$ contributions to the cross section

Multidimensional analysis of both cross section and dilepton decay angles should provide constraint on the gg and $q\bar{q}$ fractions 17

Experiment	Target type	Beam energy (GeV)	Beam type	J/ψ events
	Pt	150	π	601000
NA3 [76]		280	π	511000
		200	π^+	131000
			π^{-}	105000
E790 [127 128]	Cu		р	200000
E/89 [127, 120]	Au	800		110000
	Be			45000
	Be		р	
E866 [129]	Fe	800		3000000
	Cu		-	
	Be		р	124700
	Al			100700
NA50 [130]	Cu	450		130600
	Ag			132100
	w			78100
NA51 [121]	Р	450	n	301000
NAUT [131]	d	450	Р	312000
HERA-B [132]	с	920	р	152000
		190	π^+	1200000
	75 cm C		π^{-}	1800000
This are			р	1500000
This exp	12 cm W	190	π^+	500000
			π_	700000
				700000
			P	700000

S. Platchkov

Comments

Cross sections not published, only plots available x_F and p_T cross sections available

Only ratios of cross sections available

Only A-dependent studies of total cross sections

Only A-dependent studies of total cross sections x_F and p_T cross sections available

Estimations based on Compass preliminary numbers

. . .

ψ ' production

Pros

- No feed-down contributions. Consequences:
 - qq̄ and gg contributions could reach their maximum polarization values
- Measure: x_F and p_T distributions + polarization
- AMBER could provide the largest ψ ' data set ever.

 0^{++}

• Cons

- Lower cross section (~1/7) smaller BR (~1/8): $J^{PC}=0^{-+}$
- Ratio $(\psi'/J/\psi) \simeq 0.018$!

Requirements: Good mass resolution (≤ 100 MeV) – need vertex detectors and/or dedicated runs without absorber (AMBER II)

2++

1++

ψ ' production – expected statistics

Target	Energy	Beam	Nb of ψ'
¹² C	190 GeV	π^+	21 600
		π^-	32 400
		р	27 000
¹⁸⁴ W		π^+	9 000
		π^-	12 600
		р	12 600

Improved statistics on two targets and with three different beams

EHM-V, April 2021

Goal #3: Flavor dependence of the EMC effect

EMC effect – a longstanding nuclear physics issue

"Thirty years ago, high-energy muons at CERN revealed the first hints of an effect that puzzles experimentalists and theorists alike to this day." REVIEWS OF MODERN PHYSICS, VOLUME 89, OCTOBER-DECEMBER 2017

Nucleon-nucleon correlations, short-lived excitations, and the quarks within

How can AMBER contribute ("for free")?

Flavor-dependence of the EMC effect

Left CEA - Saclay

◆ Cloët, Benz and Thomas (2009):

Cloët, Bentz and Thomas, PRL 102, 252301 (2009)

- use nuclear matter within a covariant Nambu–Jona-Lasinio model
- Compute the flavour-dependence of the nuclear PDFs
 - *"…for* N≠Z nuclei, the u and d quarks have distinct nuclear modifications."

- Isovector-vector mean-field force
 - Appears in nuclei with $N \neq Z$
 - *u* quarks feel additional attraction,
 d quarks feel additional repulsion

Can be accessed ONLY through parity-violating DIS (JLAB) or with AMBER@CERN

AMBER – expected results

 $\sigma_W^{\pi+} / \sigma_W^{\pi-}$ LO vs NLO

- Map out the pion parton structure at large x, x > 0.1
 - 1) DY data : separate valence and sea distributions in the pion
 - 2) J/ ψ and ψ ' data : study pion-induced production infer pion valence and gluon distributions
 - ► AMBER@CERN is unique for these meson PDFs measurements
- ◆ Nuclear dependence at large x
 - Improve our knowledge of the EMC effect first look at the flavor dependence of the nuclear mean field
 - ► AMBER@CERN is unique for this nuclear stricture measurement

These three fundamental measurements will be achieved using the same data set

