Emergent Hadronic Mass via meson GPDs:

towards its experimental assessment

J. M. Morgado¹, F. De Soto², M. Defurne³, C. Mezrag³, H. Moutarde³, J. Rodríguez-Quintero¹, J. Segovia²

28th April 2021

Email: josemanuel.morgado@dci.uhu.es

¹Dpt. Ciencias Integradas, Universidad de Huelva, Huelva, Spain
²Dpt. Sistemas Fiscos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla. Spain

 $^{^3\}mathrm{DPhN}/\mathrm{IRFU}/\mathrm{CEA}\text{-Saclay},$ Gif-sur-Yvette, France

Introduction

Introduction: EHM and the energy-momentum tensor

Question: How does hadronic mass emerge from field theory?

$$\mathcal{L}_{\mathrm{QCD}} \xrightarrow{\mathbb{R}^{1,3} \rtimes SO(1,3)} \mathrm{EMT:} \ T^{\mu\nu} \ , \ g_{\mu\nu} \left\langle h\left(p\right) \right| T^{\mu\nu} \left| h\left(p\right) \right\rangle = -m_{h}^{2}$$

Energy momentum tensor trace

[See e.g.: C.D.Roberts:2102.01765]

$$g_{\mu\nu}T^{\mu\nu} = \frac{1}{4}\beta\left(\alpha_{\mu}\right)G^{\mu\nu}_{a}G^{a}_{\mu\nu} + \left[1 + \gamma\left(\alpha_{\mu}\right)\right]\sum_{i}m_{\mu,i}\bar{\psi}_{i}\psi_{i}$$

Pions provide us with the clearest window onto EHM.

Introduction: EMT and Generalised Parton Distributions

Question: How can we gain insights into $T^{\mu\nu}$?

Generalised parton distributions (GPDs)

Probabilistic interpretation:

probability amplitude of finding a parton at a given position in transverse plane carrying a momentum fraction "x" of the hadron's lightcone momentum.

cone momentum.
[M.Burkardt-PRD:071503(62)2020]

EMT:
$$\langle \pi(p')|T^{\mu\nu}|\pi(p)\rangle = 2P^{\mu}P^{\nu}\theta_{2}(t) + \frac{1}{2}(tg^{\mu\nu} - t^{\mu}t^{\nu})\theta_{1}(t)$$

GPD MM:
$$\int_0^1 dx x H^q(x,\xi,t) = A_{2,0}^q(t) + 4\xi^2 A_{2,2}^q(t)$$

[X.Ji-PRL:610(78)1997]

Further properties:

- 1. PDFs as forward limit.
- 2. Electromagnetic and gravitational FFs as Mellin moments.

Introduction

- 1. Studying EHM is intimately related with:
 - QCD energy momentum tensor
 - Pions: DCSB Nambu Goldston modes
- 2. Generalised parton distributions:
 - EMT gravitational form factors.
 - Unique tool for studying hadron structure.

Can we build "theoretically-complete" pion GPD models?

GPD modelling

GPD modelling: definition and properties

Kinematics:

[M.Diehl-Phys.Rept:41(388)2003]

- **DGLAP** $(|x| > |\xi|)$: Emits/takes a quark (x > 0)or antiquark (x < 0).
- ERBL: $(|x| < |\xi|)$: Emits pair quark-antiquark.

x: Momentum fraction of p.

 ξ : Fraction of momentum longitudinally transfered.

t: Momentum transfer.

GPD modelling: definition and properties

• Support:
[M.Diehl et al.-PLB:359(428)1998]

$$(x,\xi) \in [-1,1] \otimes [-1,1]$$

• Polynomiality: Order-m Mellin moments are degree-(m+1) polynomials in ξ .

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x, \xi, t) = \sum_{k=0}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

Lorentz invariance

• Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \quad |x| \ge \delta$$

Positivity of Hilbert space norm

• Low energy soft-pion theorem
[M.V.Polyakov-NPB:231(555)1999, C.Mezrag et al.-PLB:190(741)2015]

PCAC/Axial-Vector WTI

GPD modelling: general strategy

Goal: Build pion GPD models fulfilling all these constraints.

Problem: Different modelling strategies and different problems

- 1. Overlap representation [M.Diehl et al.-NPB:33(569)2001] Based on LFWFs, $\Psi^q(x, k_{\perp}^2)$ Positivity \checkmark
- 2. Double Distribution representation [D.Müller et al.-Fort.Phys:2(42)1994, JLAB-THY-00-33] Relying on Radon transform, \mathcal{R} Positivity ?

Solution:

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied. [N.Chouika et al.-EPJC:906(77)2017]

GPD modelling: covariant extension

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied. [N.Chouika et al.-EPJC:906(77)2017]

$$H\left(x,\xi,t\right)=\mathcal{R}\left[h\left(\beta,\alpha,t\right)\right]+\frac{1}{\left|\xi\right|}D^{+}\left(\frac{x}{\xi},t\right)+sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

- 1. Build positive DGLAP GPD ⇒ How?
- 2. Covariant extension: ERBL GPD
- **3.** Soft pion theorem: fix $D^{\pm}(\alpha,0)$

GPD properties			
Support	./	Positivity	./
[Diehl-PLB(1998)]	v	[PobyPRD(2002), Pire-EPJC(1999)]	v
Polynomiality	/	Soft-pion	/
[Ji-JPG(1998), RadyuPLB(1999)]	V	[PolyNPB(1999), MezrPLB(2015)]	

GPD modelling: positivity saturated models

Question: How can we build a positive DGLAP GPD?

1. Overlap representation [M.Diehl-NPB:33(569)2001]

$$H^{q}\left(x,\xi,t\right)|_{\left|x\right|\geq\xi}=\int\frac{d^{2}k_{\perp}}{16\pi^{3}}\Psi^{q*}\left(x_{-},k_{\perp,-}^{2}\right)\Psi^{q}\left(x_{+},k_{\perp,+}^{2}\right)$$

2. Assume factorisation of the LFWF

[J.-L.Zhang et al.-PLB:136158(815)2021] (See Khépani's talk)

$$\begin{split} \Psi^{q}\left(x,k_{\perp}^{2}\right) &\propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right) \\ & \qquad \qquad \downarrow^{\text{(Overalp rep.)}} \\ H^{q}\left(x,\xi,t\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)}\Phi\left(x,\xi,t\right) \\ & \qquad \qquad \downarrow^{(t=0)} \\ H^{q}\left(x,\xi,0\right)|_{|x|\geq\xi} &= \sqrt{q\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)} \end{split}$$

Positivity saturated

1. Chiral symmetry yields factorized LFWF:

[J.-L.Zhang et al.-PLB:136158(815)2021] (See Khépani's talk)

$$\Psi_{\pi}^{q}\left(x,k_{\perp}^{2}\right) \propto \sqrt{q_{\pi}\left(x\right)} \frac{M^{2}}{\left(k_{\perp}^{2}+M^{2}\right)^{2}}$$

2. Pion GPD saturating positivity

$$H_{\pi}^{q}(x,\xi,t)|_{\text{DGLAP}} = \frac{\sqrt{q_{\pi}(x_{-})} q_{\pi}(x_{+})}{(1+z^{2})^{2}} \left[3 + \frac{1-2z}{1+z} \frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}} \right]$$

$$\frac{1}{2} \left[3 + \frac{1 - 2z}{1 + z} \frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}} \right]$$

$$z = -t \left(1 - x\right)^2 / 4M^2 \left(1 - \xi^2\right)$$

Two models:

- Algebraic model $q_{\pi}(x) = 30x^2(1-x)^2$
- Realistic model (DSE) [M.Ding et al.-PRD:054014(101)2020]

$$q_{\pi}(x) = \mathcal{N}_{q}x^{2}(1-x)^{2}$$
$$\times \left[1 + \gamma x(1-x) + \rho \sqrt{x(1-x)}\right]$$

9/20

Pion GPDs: covariant extension

Covariant extension:

$$H^{q}\left(x,\xi,t\right) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

Fix D-terms with soft pion theorem:

[M.V.Polyakov-NPB:231(555)1999, C.Mezrag at al.-PLB:190(741)2015]

$$H_{\pi^{+}}^{I=0}(x,\xi,t)\big|_{\xi=1,t=0} = H_{\pi^{+}}(x,\xi,t) - H_{\pi^{+}}(-x,\xi,t)\big|_{\xi=1,t=0} = 0$$

$$H_{\pi^{+}}^{I=1}(x,\xi,t)\big|_{\xi=1,t=0} = H_{\pi^{+}}(x,\xi,t) + H_{\pi^{+}}(-x,\xi,t)\big|_{\xi=1,t=0} = \varphi\left(\frac{1+x}{2}\right)$$

Pion GPDs: Mellin moments and form factors

D-term t-dependence:

$$d^{\pm}(t) = 1/\left(1 - t/4M^2\right)$$

Great agreement between experimental data for $F_{\pi}(t)$ and $\theta_{1}(t)$ and model prediction with one single free parameter.

Comparison with available data for $\theta_2(t)$ is not as good as for $\theta_1(t)$. This is currently being investigated.

Phenomenology of pion GPDs

Phenomenology of pion GPDs: Sullivan process

We have stablished a way of bulding pion GPD models ${f fulfilling}$ all of the QCD theoretical constraints, so...

What about phenomenology?

DVCS amplitudes: parametrized by hadron GPDs. [X.Ji-PRD:7114(55)1997]

Sullivan process [J.D.Sullivan-PRD:1732(5)1972]

The Sullivan process has already been employed for extracting

π-EFFs.[G.M.Huber at al.-PRC:045203(78)2008]

Can we probe pion GPDs?

[D.Amrath at al.-EPJC:179(58)2008]

Phenomenology of pion GPDs: Sullivan process

In fact... this has been advocated in the recent EIC-Yellow report [EICYR:phys.ins-det/2103.05419]

Science Question	Key Measurement	Key Requirements
What are the quark and gluon energy contributions to the pion mass?	·	Need to uniquely determine
	Pion structure function data over a range	$e + p \rightarrow e' + X + n \text{ (low } -t\text{)}$
	of x and Q^2 .	 CM energy range ~10-100 GeV
		 Charged and neutral currents desirable
Is the pion full or empty of gluons as viewed at large Q^2 ?	Pion structure function data at large Q^2 .	◆ CM energy ~100 GeV
	Pion structure function data at large Q*.	 Inclusive and open-charm detection
What are the quark and gluon energy contributions to the kaon mass?	Kaon structure function data over a range of x and Q^2 .	Need to uniquely determine
		$e + p \rightarrow e^{r} + X + \Lambda/\Sigma^{0} \text{ (low } -t)$
	of x and Q*.	 CM energy range ~10-100 GeV
Are there more or less gluons in kaons than in pions as viewed at large Q ² ?		CM energy ~100 GeV
	Kaon structure function data at large Q ² .	 Inclusive and open-charm detection
Can we get quantitative guidance on the emergent pion mass mechanism?	Pion form factor data	 Need to uniquely determine exclusive process
		$e + p \rightarrow e' + \pi^+ + n \text{ (low } -t)$
	for $Q^2 = 10\text{-}40 \text{ (GeV}/c)^2$.	• $e + p$ and $e + D$ at similar energies
		◆ CM energy ~10-75 GeV
What is the size and range of interference between emergent-mass and the Higgs-mass mechanism?	Kaon form factor data for $Q^2 = 10\text{-}20 \text{ (GeV/}c)^2$.	Need to uniquely determine exclusive process
		$e + p \rightarrow e^{t} + K + \Lambda \text{ (low } -t\text{)}$
		 L/T separation at CM energy ~10-20 GeV
		 Λ/Σ⁰ ratios at CM energy ~10-50 GeV
What is the difference between the impacts of emergent- and Higgs-mass mechanisms on light-quark behavior?	Behavior of (valence) up quarks in pion and kaon at large x.	CM energy ~20 GeV (lowest CM energy to ac-
		cess large-x region)
	and kaon at large x.	 Higher CM energy for range in Q² desirable
What is the relationship between dynamically chiral symmetry breaking and confinement?	Transverse-momentum dependent Fragmentation Functions of quarks into	· Collider kinematics desirable (as compared to
		fixed-target kinematics)
	pions and kaons.	 CM energy range ~20-140 GeV
More speculative observables		
What is the trace anomaly contribution to the pion mass?	Elastic J/Ψ production at low W off the	 Need to uniquely determine exclusive process
		$e + p \rightarrow e^{r} + J/\Psi + \pi^{+} + n \text{ (low } -t)$
	pion.	 High luminosity (≥ 10³⁴cm⁻² sec⁻¹)
		◆ CM energy ~70 GeV
Can we obtain tomographic snapshots of the pion in the transverse plane? What is the pressure distribution in a pion?	Measurement of DVCS off pion target as defined with Sullivan process.	 Need to uniquely determine exclusive process
		$e + p \rightarrow e' + \gamma + \pi^+ + n \text{ (low } -t\text{)}$
		 High luminosity (≥ 10³⁴cm⁻² sec⁻¹)
		CM energy ~10-100 GeV
	V. I	 Need to uniquely determine SIDIS off pion
		$e + p \rightarrow e^{r} + h + X + n \text{ (low } -t\text{)}$
Are transverse momentum distributions universal in pions and protons?	Hadron multiplicities in SIDIS off a pion target as defined with Sullivan process.	 High luminosity (10³⁴cm⁻² sec⁻¹)
	target as demied with 5thiivan process.	• $e + p$ and $e + D$ at similar energies desirable
		◆ CM energy ~10-100 GeV

Let us see if that would be feasible in a future electron-ion collider.

Phenomenology of pion GPDs: Sullivan process

One pion exchange approximation: [D.Amrath at al.-EPJC:179(58)2008]

- $-t < 0,6 \,\mathrm{GeV}^2$ $\sigma_L >> \sigma_\perp$

Met at EIC [EICYR:phys.ins-det/2103.05419]

Phenomenology of pion GPDs: QCD evolution

Phenomenology of pion GPDs: Compton Form Factors

Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

Phenomenology of pion GPDs: DVCs and Sullivan process

Can we measure DVCS?

One pion exchange approximation: [D.Amrath at al.-EPJC:179(58)2008]

Changing lepton polarisation one can (formally) access interference between DVCS and BH amplitudes.

Is it experimentally feasible?

Phenomenology of pion GPDs: Asymmetry (EIC)

Non-zero asymmetry: optimism about measuring DVCS on pions at future EIC.

Summary and perspectives

Summary and perspectives

Summary

- 1. GPDs can provide insight into EHM.
- 2. Pion GPD models fulfilling every theoretical constraint
 - Polynomiality: Covariant extension.
 - Positivity
 - PCAC/AV-WTI: Soft pion theorem.
 - Agreement with experimental data for EFFs and GFFs.
- **3.** DVCS on virtual pions influenced by gluon content
 - Higher order analysis needed for phenomenology.
- 4. Pion structure to be tested at future electron-ion colliders
 - Insights into EHM could be gained experimentally.

Perspectives

- 1. Exploit realistic pion PDF (currently at work)
- **2.** Extension of the computating chain
 - Higher order analysis
 - Baryons

Thank you!