Pion structure as a problem in Minkowski space

Emanuel Ydrefors
Instituto Tecnológico de Aeronáutica
Collaborators: J. H. Alvarenga Nogueira, W. de Paula, T. Frederico and G. Salmè
Perceiving the Emergence of Hadron Mass through AMBER@CERN April 28, 2021

References: W. de Paula et al, PRD 103 (2021) 014002, E. Ydrefors et al (under revision in PLB)

Introduction

- The pion plays a crucial role within QCD, because its Goldstone boson nature is associated with the dynamical generation of the mass of hadrons and nuclei.
- From the theory side, the current challenge is to extract from Euclidean calculations (e.g. LQCD) Minkowskian physical quantities, e.g. PDFs.
- Recently, the momentum distributions have been a target of intense investigation and will be as well at the planned EIC.
- In this work the pion was studied by solving the Bethe-Salpeter equation directly in Minkowski space.
- Within this approach it is straightforward to compute physical quantities defined on the LF.

Theoretical framework

- The BS amplitude, describing the 0^{-}quark-antiquark bound state, obeys the equation ${ }^{1}$

$$
\begin{align*}
\Phi(k, p) & =S(k+p / 2) \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} S^{\mu v}(q) \Gamma_{\mu}(q) \phi\left(k^{\prime}, p\right) \widehat{\Gamma}_{v}(q) S(k-p / 2) ; \tag{1}\\
\widehat{\Gamma}_{v}(q) & =C \Gamma_{v}(q) C^{-1}
\end{align*}
$$

where we currently use bare progagators for the quarks and gluons, i.e.

$$
\begin{equation*}
S(k)=i \frac{k+m}{k^{2}-m^{2}+i \epsilon}, \quad S^{\mu v}(q)=-i \frac{g^{\mu v}}{q^{2}-\mu^{2}+i \epsilon}, \tag{2}
\end{equation*}
$$

and the quark-gluon vertex is described by

$$
\begin{equation*}
\Gamma^{\mu}(q)=i \frac{\mu^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}+i \epsilon} \gamma^{\mu} . \tag{3}
\end{equation*}
$$

characterized by the scale parameter Λ.

[^0]- The BS amplitude is decomposed as

$$
\begin{equation*}
\Phi(k, p)=\sum_{i=1}^{4} S_{i}(k, p) \phi_{i}(k, p) \tag{4}
\end{equation*}
$$

where S_{i} is a Dirac structure.

- Each scalar function ϕ_{i} written in terms of NIR:

$$
\begin{equation*}
\phi_{i}(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left[k^{2}+z^{\prime} p \cdot k-\gamma^{\prime}-\kappa^{2}+i \epsilon\right]^{3}} \tag{5}
\end{equation*}
$$

- After LF projection following system of coupled integral equations is obtained:

$$
\begin{equation*}
\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z^{\prime}\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}=i M g^{2} \sum_{j} \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} \mathcal{L}_{i j}\left(\gamma, z ; \gamma^{\prime} z^{\prime}\right) g_{j}\left(\gamma, z^{\prime}\right) \tag{6}
\end{equation*}
$$

which are solved for the coupling constant g^{2} and the Nakanishi weight functions g_{i}.

- Once the $g_{i}{ }^{\prime}$ s are known physical observables can be calculated as integrals over these functions.

Method for solving the integral equations

- Basis expansion:

$$
\begin{equation*}
g_{i}(\gamma, z)=\sum_{k=0}^{N_{z}} \sum_{n=0}^{N_{\gamma}} A_{k n}^{i} G_{2 k+r_{i}}^{i}(z) \mathcal{L}_{n}(\gamma) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& G_{n}^{\lambda}(z)=\left(1-z^{2}\right)^{(2 \lambda-1) / 4} \Gamma(\lambda) \sqrt{\frac{n!(n+\lambda)}{2^{1-2 \lambda} \pi \Gamma(n+2 \lambda)}} C_{n}^{\lambda}(z) \\
& \mathcal{L}_{n}(\gamma)=\sqrt{a} L_{n}(a \gamma) e^{-a \gamma / 2}
\end{aligned}
$$

with $C_{n}^{\lambda}(z)$ Gegenbauer polynomial and $L_{n}(a \gamma)$ Laguerre polynomial.

- The system of integral equations when transformed to a generalized eigenvalue problem.

Valence LF wave function

- The spin components of the valence LF wave function of the pion read

$$
\begin{align*}
& \psi_{\uparrow \downarrow}(\gamma, z)=\psi_{2}(\gamma, z)+\frac{z}{2} \psi_{3}(\gamma, z)+\frac{i}{M^{3}} \int_{0}^{\infty} d \gamma^{\prime} \frac{\partial g_{3}\left(\gamma^{\prime}, z\right) / \partial z}{\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}} \tag{9}\\
& \psi_{\uparrow \uparrow}(\gamma, z)=\frac{\sqrt{\gamma}}{M} \psi_{4}(\gamma, z)
\end{align*}
$$

with the LF amplitudes given by

$$
\begin{equation*}
\psi_{i}(\gamma, z)=-\frac{i}{M} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}} \tag{10}
\end{equation*}
$$

- The probability density is then given by

$$
\begin{equation*}
\mathcal{P}_{v a l}(\gamma, z)=\frac{N_{c}}{16 \pi^{2}}\left[\left|\psi_{\uparrow \downarrow}(\gamma, z)\right|^{2}+\left|\psi_{\uparrow \uparrow}(\gamma, z)\right|^{2}\right] \tag{11}
\end{equation*}
$$

Static properties

Set	$m(\mathrm{MeV})$	B / m	μ / m	Λ / m	$P_{\text {val }}$	$P_{\uparrow \downarrow}$	$P_{\uparrow \uparrow}$	$f_{\pi}(\mathrm{MeV})$
I	187	1.25	0.15	2	0.64	0.55	0.09	77
II	255	1.45	1.5	1	0.65	0.55	0.10	112
III	255	1.45	2	1	0.66	0.56	0.11	117
IV	215	1.35	2	1	0.67	0.57	0.11	98
V	187	1.25	2	1	0.67	0.56	0.11	84
VI	255	1.45	2.5	1	0.68	0.56	0.11	122
VII	255	1.45	2.5	1.1	0.69	0.56	0.12	127
VIII	255	1.45	2.5	1.2	0.70	0.57	0.13	130
IX	255	1.45	1	2	0.70	0.57	0.14	134
X	215	1.35	1	2	0.71	0.57	0.14	112
XI	187	1.25	1	2	0.71	0.58	0.14	96

- The set VIII gives an f_{π} in good agreement with the experimental value.
- The valence probability is $64-71 \%$, i.e. rather large contributions beyond the valence component.
- $P_{\uparrow \uparrow} / P_{\text {val }} \sim 19 \%$, so relativistic effects in the pion quite important.

Valence LF-momentum distributions

- Result in red reproduce experimental f_{π} and two other cases shown for comparison.
- Here

$$
\begin{equation*}
\phi(\xi)=\int_{0}^{\infty} d \gamma \mathcal{P}(\gamma, z), \quad P(\gamma)=\int_{-1}^{1} d z \mathcal{P}(\gamma, z) \tag{11}
\end{equation*}
$$

where $P(\gamma, z)$ is valence probability distribution.

- $\phi(\xi)$ is pdf at initial scale. Evolved PDFs are in progress.

Pion distribution amplitude

- Spin components of the DA, defined by

$$
\begin{equation*}
\phi_{\uparrow \downarrow(\uparrow \uparrow)}(\xi)=\frac{\int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow(\uparrow \uparrow)}(\gamma, z)}{\int_{0}^{1} d \xi \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow(\uparrow \uparrow)}(\gamma, z)} \tag{13}
\end{equation*}
$$

- Aligned component (in blue) more wide than the anti-aligned one (in red).

Pion image on the null-plane

- The space-time structure of the pion, can be studied in terms of the Ioffe-time ($\tilde{z}=x^{-} p^{+} / 2$) and the impact parameter $\mathbf{b}=\mathbf{x}_{\perp}$.
- It is done by performing the Fourier transform of the valence wave function.

Here an exponential factor has been factored out, i.e.

$$
\begin{equation*}
\tilde{\psi}_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, \mathbf{b})=e^{-b \kappa-\frac{i}{2} \tilde{z}} \chi_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, b) \tag{14}
\end{equation*}
$$

Integrated amplitudes

- zz dependence:

$$
\begin{equation*}
\Psi_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z})=\frac{\int_{0}^{\infty} d b b \tilde{\psi}_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, b)}{\int_{0}^{\infty} d b b \int_{-\infty}^{\infty} d \tilde{z} \tilde{\psi}_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, b)} \tag{15}
\end{equation*}
$$

- Transverse dependence:

$$
\begin{equation*}
\phi_{\uparrow \downarrow(\uparrow \uparrow)}^{T}(b)=\frac{\int_{-\infty}^{\infty} d \tilde{z} \tilde{\psi}_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, b)}{\int_{0}^{\infty} d b b \int_{-\infty}^{\infty} d \tilde{z} \tilde{\psi}_{\uparrow \downarrow(\uparrow \uparrow)}(\tilde{z}, b)} ; \quad \sim e^{-\kappa b} \text { at large } b \tag{16}
\end{equation*}
$$

- Transverse wave function should be accesible by Euclidean calculations, since it only depends on transverse coordinates.

Covariant electromagnetic form factors

- In impulse approximation, with bare photon vertex $i \gamma^{\mu}$,

$$
\begin{equation*}
\left(p+p^{\prime}\right)^{\mu} F\left(Q^{2}\right)=-i \frac{N_{c}}{4 M^{2}+Q^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[(-k-m) \bar{\Phi}_{2}\left(k_{2} ; p^{\prime}\right)\left(p p+p^{\prime}\right) \Phi_{1}\left(k_{1} ; p\right)\right], \tag{17}
\end{equation*}
$$

where $Q^{2}=-\left(p-p^{\prime}\right)^{2}$.

- After using the NIR and computing the trace, etc one obtains

$$
\begin{equation*}
F\left(Q^{2}\right)=\frac{N_{c}}{32 \pi^{2}} \sum_{i j} \int_{0}^{\infty} d \gamma \int_{-1}^{1} d z g_{j}(\gamma, z) \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} g_{i}\left(\gamma^{\prime}, z^{\prime}\right) \int_{0}^{1} d y y^{2}(1-y)^{2} \frac{c_{i j}}{M_{c o v}^{8}} \tag{18}
\end{equation*}
$$

Valence electromagnetic form factor

- The valence electromagnetic FF, obtained from the matrix element of γ^{+}, can be written as

$$
\begin{align*}
& F_{\text {val }}\left(Q^{2}\right)=\frac{N_{c}}{16 \pi^{3}} \int d^{2} k_{\perp} \int_{-1}^{1} d z\left[\psi_{\uparrow \downarrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \downarrow}(\gamma, z)+\frac{\vec{k}_{\perp} \cdot \vec{k}_{\perp}^{\prime}}{\gamma \gamma^{\prime}} \psi_{\uparrow \uparrow}^{*}\left(\gamma^{\prime}, z\right) \psi_{\uparrow \uparrow}(\gamma, z)\right] \\
& F_{\text {val }}(0)=p_{\text {val }} \tag{19}
\end{align*}
$$

where $\vec{k}_{\perp}^{\prime}=\vec{k}_{\perp}+\frac{1}{2}(1+z) \vec{q}_{\perp}$ and e.g. $\gamma=\left|k_{\perp}\right|^{2}$.

- Total FF is $F\left(Q^{2}\right)=F_{\text {val }}\left(Q^{2}\right)+F_{\text {nval }}\left(Q^{2}\right)$.
- Asymptotically,

$$
\begin{equation*}
F_{v a l} \sim \frac{N_{c}}{16 \pi^{2}} \int_{-1}^{1} d z \psi_{\uparrow \downarrow}\left(\frac{(1+z)^{2}}{4} Q^{2}, z\right) \int_{0}^{\infty} d \gamma \psi_{\uparrow \downarrow}(\gamma, z) ; \quad Q^{2} \rightarrow \infty \tag{20}
\end{equation*}
$$

obtained by neglecting the aligned $(\uparrow \uparrow)$ contribution.

Results for the pion radius

Set	m	B / m	μ / m	Λ / m	$P_{\text {val }}$	f_{π}	$r_{\pi}(\mathrm{fm})$	$r_{\text {val }}(\mathrm{fm})$	$r_{\text {nval }}(\mathrm{fm})$
I	255	1.45	2.5	1.2	0.70	130	0.663	0.710	0.538
II	215	1.35	2	1	0.67	98	0.835	0.895	0.703

- $r_{\pi}^{2}=-6 d F\left(Q^{2}\right) /\left.d Q^{2}\right|_{Q^{2}=0}$,
$r_{\text {val }}^{2}=-6 / P_{\text {val }} d F_{\text {val }}\left(Q^{2}\right) /\left.d Q^{2}\right|_{Q^{2}=0}$,
$r_{\text {nval }}^{2}=-6 / P_{\text {nval }} d F_{\text {val }}\left(Q^{2}\right) /\left.d Q^{2}\right|_{Q^{2}=0}$ with $F_{\text {nval }}\left(Q^{2}\right)=F\left(Q^{2}\right)-F_{\text {val }}\left(Q^{2}\right)$
- The set I gives $f_{\pi}=130 \mathrm{MeV}$ and $r_{\pi}=0.633 \mathrm{fm}$ in very good agreement with experimental data of $f_{\pi}^{P D G}=130.50(1)(3)(13) \mathrm{MeV}$ and $r_{\pi}^{P D G}=0.659 \pm 0.004 \mathrm{fm}$.
- For the radii $r_{\text {val }}>r_{\text {nval }}$, i.e. the higher Fock components generate a more compact charge distribution.

Form factor vs Q^{2}

- Despite the simplicity of our model we have a good agreement with experimental data for all Q^{2}.
- As seen in right figure, our results agree quite well with the one of pQCD for large Q^{2}.

Valence vs covariant FF

- Beyond-valence contributions important especially for small or moderate Q^{2}. At $Q^{2}=100 \mathrm{GeV}^{2}$ the valence part exhausts 95% of the FF.

Spin contributions to the valence FF

- At $Q^{2}=0$, spin-aligned contribution about 20% and decreasing with increasing Q^{2}. Almost neglible at large momentum transfers.
- Zero in spin-aligned FF due to relativistic spin-orbit coupling leading to the term $\vec{k}_{\perp} \cdot \vec{k}_{\perp}^{\prime}$.
- Difference between exact formula and approximate formula decreases with increasing Q^{2}, as expected.

Sliced valence FF

- Sliced valence FF defined through

$$
\begin{equation*}
F_{\text {val }}\left(Q^{2}\right)=\int_{-1}^{1} d z \tilde{F}_{v a l}\left(z, Q^{2}\right) \tag{21}
\end{equation*}
$$

- Sliced FF symmetric for $Q^{2}=0$.
- Cumulates close to $z=-1$ for increasing Q^{2}, i.e. $q \bar{q}$ pair is collinear to keep the pion in the final state.

Conclusion

- The pion has been studied by solving the fermion-antifermion BS equation directly in Minkowski space, through the use of the NIR.
- The spin contributions to several physical quantities defined on the LF plane has been analyzed.
- Furthermore, the image of the pion in the space consisting of the Ioffe-time and the transverse variables has been constructed.
- The beyond-valence contributions turn out to be important, i.e. the valence probability is of the order of 70%.
- The covariant FF (including all Fock components) and also its valence contribution has been computed. A very good agreement with experimental data was found.
- However, for the moment the adopted model has several limitations:
- Quark and gluon propagators are the constituent ones (i.e. no momentum-dependent self-energies)
- Relatively simple quark-gluon vertex
- No confinement

Outlook

- Calculation of transverse momentum distribution including all Fock-components included in the model.
- Implementation of dressing functions for quarks and gluons.
- Implementation of a more realistic quark-gluon vertex.
- Calculations for the case of total angular momentum $J=1$, so the ρ-meson can be studied.

[^0]: ${ }^{1}$ W. de Paula et al, Eur. Phys. C (2017) 77

