Pion structure as a problem in Minkowski space

Emanuel Ydrefors

Instituto Tecnológico de Aeronáutica

Collaborators: J. H. Alvarenga Nogueira, W. de Paula, T. Frederico and G. Salmè

Perceiving the Emergence of Hadron Mass through AMBER@CERN April 28, 2021

References: W. de Paula et al, PRD 103 (2021) 014002, E. Ydrefors et al (under revision in PLB)

Introduction

- The pion plays a crucial role within QCD, because its Goldstone boson nature is associated with the dynamical generation of the mass of hadrons and nuclei.
- From the theory side, the current challenge is to extract from Euclidean calculations (e.g. LQCD) Minkowskian physical quantities, e.g. PDFs.
- Recently, the momentum distributions have been a target of intense investigation and will be as well at the planned EIC.
- In this work the pion was studied by solving the Bethe-Salpeter equation directly in Minkowski space.
- Within this approach it is straightforward to compute physical quantities defined on the LF.

Theoretical framework

 \bullet The BS amplitude, describing the 0^- quark-antiquark bound state, obeys the equation 1

$$\Phi(k,p) = S(k+p/2) \int \frac{d^4k'}{(2\pi)^4} S^{\mu\nu}(q) \Gamma_{\mu}(q) \phi(k',p) \widehat{\Gamma}_{\nu}(q) S(k-p/2);
\widehat{\Gamma}_{\nu}(q) = C\Gamma_{\nu}(q) C^{-1},$$
(1)

where we currently use bare progagators for the quarks and gluons, i.e.

$$S(k) = i \frac{k + m}{k^2 - m^2 + i\epsilon'}, \quad S^{\mu\nu}(q) = -i \frac{g^{\mu\nu}}{q^2 - \mu^2 + i\epsilon'}$$
 (2)

and the quark-gluon vertex is described by

$$\Gamma^{\mu}(q) = ig \frac{\mu^2 - \Lambda^2}{q^2 - \Lambda^2 + i\epsilon} \gamma^{\mu}.$$
 (3)

characterized by the scale parameter Λ .

E. Ydrefors (ITA, Brazil)

¹W. de Paula et al, Eur. Phys. C (2017) 77

• The BS amplitude is decomposed as

$$\Phi(k,p) = \sum_{i=1}^{4} S_i(k,p)\phi_i(k,p)$$
 (4)

where S_i is a Dirac structure.

• Each scalar function ϕ_i written in terms of NIR:

$$\phi_i(k,p) = \int_{-1}^1 dz' \int_0^\infty d\gamma' \frac{g_i(\gamma',z')}{[k^2 + z'p \cdot k - \gamma' - \kappa^2 + i\epsilon]^3}$$
 (5)

• After LF projection following system of coupled integral equations is obtained:

$$\int_0^\infty d\gamma' \frac{g_i(\gamma',z')}{[\gamma+\gamma'+m^2z^2+(1-z^2)\kappa^2]^2} = iMg^2 \sum_j \int_0^\infty d\gamma' \int_{-1}^1 dz' \mathcal{L}_{ij}(\gamma,z;\gamma'z')g_j(\gamma,z'),$$
(6)

which are solved for the coupling constant g^2 and the Nakanishi weight functions g_i .

 Once the g_i's are known physical observables can be calculated as integrals over these functions.

Method for solving the integral equations

Basis expansion:

$$g_i(\gamma, z) = \sum_{k=0}^{N_z} \sum_{n=0}^{N_\gamma} A_{kn}^i G_{2k+r_i}^i(z) \mathcal{L}_n(\gamma), \tag{7}$$

where

$$G_n^{\lambda}(z) = (1 - z^2)^{(2\lambda - 1)/4} \Gamma(\lambda) \sqrt{\frac{n!(n + \lambda)}{2^{1 - 2\lambda} \pi \Gamma(n + 2\lambda)}} C_n^{\lambda}(z)$$

$$\mathcal{L}_n(\gamma) = \sqrt{a} L_n(a\gamma) e^{-a\gamma/2}.$$
(8)

with $C_n^{\lambda}(z)$ Gegenbauer polynomial and $L_n(a\gamma)$ Laguerre polynomial.

 The system of integral equations when transformed to a generalized eigenvalue problem.

Valence LF wave function

• The spin components of the valence LF wave function of the pion read

$$\psi_{\uparrow\downarrow}(\gamma,z) = \psi_2(\gamma,z) + \frac{z}{2}\psi_3(\gamma,z) + \frac{i}{M^3} \int_0^\infty d\gamma' \frac{\partial g_3(\gamma',z)/\partial z}{\gamma + \gamma' + z^2 m^2 + (1 - z^2)\kappa^2},$$

$$\psi_{\uparrow\uparrow}(\gamma,z) = \frac{\sqrt{\gamma}}{M} \psi_4(\gamma,z),$$
(9)

with the LF amplitudes given by

$$\psi_i(\gamma, z) = -\frac{i}{M} \int_0^\infty d\gamma' \frac{g_i(\gamma', z)}{[\gamma + \gamma' + m^2 z^2 + (1 - z^2)\kappa^2]^2}.$$
 (10)

The probability density is then given by

$$\mathcal{P}_{val}(\gamma, z) = \frac{N_c}{16\pi^2} \Big[|\psi_{\uparrow\downarrow}(\gamma, z)|^2 + |\psi_{\uparrow\uparrow}(\gamma, z)|^2 \Big]$$
 (11)

Static properties

Set	m (MeV)	B/m	μ/m	Λ/m	P_{val}	$P_{\uparrow\downarrow}$	$P_{\uparrow\uparrow}$	f_{π} (MeV)
I	187	1.25	0.15	2	0.64	0.55	0.09	77
II	255	1.45	1.5	1	0.65	0.55	0.10	112
III	255	1.45	2	1	0.66	0.56	0.11	117
IV	215	1.35	2	1	0.67	0.57	0.11	98
V	187	1.25	2	1	0.67	0.56	0.11	84
VI	255	1.45	2.5	1	0.68	0.56	0.11	122
VII	255	1.45	2.5	1.1	0.69	0.56	0.12	127
VIII	255	1.45	2.5	1.2	0.70	0.57	0.13	130
IX	255	1.45	1	2	0.70	0.57	0.14	134
X	215	1.35	1	2	0.71	0.57	0.14	112
XI	187	1.25	1	2	0.71	0.58	0.14	96

- The set VIII gives an f_{π} in good agreement with the experimental value.
- The valence probability is 64-71%, i.e. rather large contributions beyond the valence component.
- $P_{\uparrow\uparrow}/P_{val}\sim 19\%$, so relativistic effects in the pion quite important.

Valence LF-momentum distributions

- Result in red reproduce experimental f_{π} and two other cases shown for comparison.
- Here

$$\phi(\xi) = \int_0^\infty d\gamma \mathcal{P}(\gamma, z), \quad P(\gamma) = \int_{-1}^1 dz \mathcal{P}(\gamma, z)$$
 (12)

where $P(\gamma, z)$ is valence probability distribution.

• $\phi(\xi)$ is pdf at initial scale. Evolved PDFs are in progress.

Pion distribution amplitude

• Spin components of the DA, defined by

$$\phi_{\uparrow\downarrow(\uparrow\uparrow)}(\xi) = \frac{\int_0^\infty d\gamma \psi_{\uparrow\downarrow(\uparrow\uparrow)}(\gamma, z)}{\int_0^1 d\xi \int_0^\infty d\gamma \psi_{\uparrow\downarrow(\uparrow\uparrow)}(\gamma, z)}$$
(13)

• Aligned component (in blue) more wide than the anti-aligned one (in red).

Pion image on the null-plane

- The space-time structure of the pion, can be studied in terms of the Ioffe-time $(\tilde{z}=x^-p^+/2)$ and the impact parameter $\mathbf{b}=\mathbf{x}_\perp$.
- It is done by performing the Fourier transform of the valence wave function.

Here an exponential factor has been factored out, i.e.

$$\tilde{\psi}_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z},\mathbf{b}) = e^{-b\kappa - \frac{i}{2}\tilde{z}}\chi_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z},b)$$
(14)

Integrated amplitudes

• \tilde{z} dependence:

$$\Psi_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z}) = \frac{\int_0^\infty dbb\tilde{\psi}_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z},b)}{\int_0^\infty dbb\int_{-\infty}^\infty d\tilde{z}\tilde{\psi}_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z},b)}$$
(15)

Transverse dependence:

$$\phi_{\uparrow\downarrow(\uparrow\uparrow)}^{T}(b) = \frac{\int_{-\infty}^{\infty} d\tilde{z} \tilde{\psi}_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z}, b)}{\int_{0}^{\infty} db b \int_{-\infty}^{\infty} d\tilde{z} \tilde{\psi}_{\uparrow\downarrow(\uparrow\uparrow)}(\tilde{z}, b)}; \quad \sim e^{-\kappa b} \text{ at large } b$$
 (16)

 Transverse wave function should be accesible by Euclidean calculations, since it only depends on transverse coordinates.

Covariant electromagnetic form factors

• In impulse approximation, with bare photon vertex $i\gamma^{\mu}$,

$$(p+p')^{\mu}F(Q^2) = -i\frac{N_c}{4M^2 + Q^2} \int \frac{d^4k}{(2\pi)^4} \text{Tr}[(-\not k - m)\bar{\Phi}_2(k_2; p')(\not p + \not p')\Phi_1(k_1; p)],$$
(17)

where $Q^2 = -(p - p')^2$.

After using the NIR and computing the trace, etc one obtains

$$F(Q^{2}) = \frac{N_{c}}{32\pi^{2}} \sum_{ij} \int_{0}^{\infty} d\gamma \int_{-1}^{1} dz g_{j}(\gamma, z) \int_{0}^{\infty} d\gamma' \int_{-1}^{1} dz' g_{i}(\gamma', z') \int_{0}^{1} dy y^{2} (1 - y)^{2} \frac{c_{ij}}{M_{cov}^{8}}$$
(18)

Valence electromagnetic form factor

• The valence electromagnetic FF, obtained from the matrix element of γ^+ , can be written as

$$F_{val}(Q^{2}) = \frac{N_{c}}{16\pi^{3}} \int d^{2}k_{\perp} \int_{-1}^{1} dz \Big[\psi_{\uparrow\downarrow}^{*}(\gamma', z) \psi_{\uparrow\downarrow}(\gamma, z) + \frac{\vec{k}_{\perp} \cdot \vec{k}_{\perp}'}{\gamma \gamma'} \psi_{\uparrow\uparrow}^{*}(\gamma', z) \psi_{\uparrow\uparrow}(\gamma, z) \Big];$$

$$F_{val}(0) = p_{val}, \tag{19}$$

where $\vec{k}'_{\perp} = \vec{k}_{\perp} + \frac{1}{2}(1+z)\vec{q}_{\perp}$ and e.g. $\gamma = |k_{\perp}|^2$.

- Total FF is $F(Q^2) = F_{val}(Q^2) + F_{nval}(Q^2)$.
- Asymptotically,

$$F_{val} \sim \frac{N_c}{16\pi^2} \int_{-1}^1 dz \psi_{\uparrow\downarrow} \left(\frac{(1+z)^2}{4} Q^2, z \right) \int_0^\infty d\gamma \psi_{\uparrow\downarrow}(\gamma, z); \quad Q^2 \to \infty, \tag{20}$$

obtained by neglecting the aligned $(\uparrow\uparrow)$ contribution.

Results for the pion radius

Set	m	B/m	μ/m	Λ/m	P_{val}	f_{π}	r_{π} (fm)	r_{val} (fm)	r_{nval} (fm)
I	255	1.45	2.5	1.2	0.70	130	0.663	0.710	0.538
II	215	1.35	2	1	0.67	98	0.835	0.895	0.703

- $r_{\pi}^2 = -6dF(Q^2)/dQ^2|_{Q^2=0}$, $r_{val}^2 = -6/P_{val}dF_{val}(Q^2)/dQ^2|_{Q^2=0}$, $r_{nval}^2 = -6/P_{nval}dF_{val}(Q^2)/dQ^2|_{Q^2=0}$ with $F_{nval}(Q^2) = F(Q^2) - F_{val}(Q^2)$
- The set I gives $f_{\pi}=130$ MeV and $r_{\pi}=0.633$ fm in very good agreement with experimental data of $f_{\pi}^{PDG}=130.50(1)(3)(13)$ MeV and $r_{\pi}^{PDG}=0.659\pm0.004$ fm.
- For the radii $r_{val} > r_{nval}$, i.e. the higher Fock components generate a more compact charge distribution.

Form factor vs Q^2

- Despite the simplicity of our model we have a good agreement with experimental data for all Q^2 .
- As seen in right figure, our results agree quite well with the one of pQCD for large Q^2 .

Valence vs covariant FF

• Beyond-valence contributions important especially for small or moderate Q^2 . At $Q^2=100~{\rm GeV}^2$ the valence part exhausts 95% of the FF.

Spin contributions to the valence FF

- At $Q^2 = 0$, spin-aligned contribution about 20% and decreasing with increasing Q^2 . Almost neglible at large momentum transfers.
- Zero in spin-aligned FF due to relativistic spin-orbit coupling leading to the term $\vec{k}_\perp \cdot \vec{k}'_\perp$.
- Difference between exact formula and approximate formula decreases with increasing Q^2 , as expected.

• Sliced valence FF defined through

$$F_{val}(Q^2) = \int_{-1}^{1} dz \tilde{F}_{val}(z, Q^2)$$
 (21)

- Sliced FF symmetric for $Q^2 = 0$.
- Cumulates close to z = -1 for increasing Q^2 , i.e. $q\bar{q}$ pair is collinear to keep the pion in the final state.

Conclusion

- The pion has been studied by solving the fermion-antifermion BS equation directly in Minkowski space, through the use of the NIR.
- The spin contributions to several physical quantities defined on the LF plane has been analyzed.
- Furthermore, the image of the pion in the space consisting of the Ioffe-time and the transverse variables has been constructed.
- The beyond-valence contributions turn out to be important, i.e. the valence probability is of the order of 70%.
- The covariant FF (including all Fock components) and also its valence contribution has been computed. A very good agreement with experimental data was found.
- However, for the moment the adopted model has several limitations:
 - Quark and gluon propagators are the constituent ones (i.e. no momentum-dependent self-energies)
 - Relatively simple quark-gluon vertex
 - No confinement

Outlook

- Calculation of transverse momentum distribution including all Fock-components included in the model.
- Implementation of dressing functions for quarks and gluons.
- Implementation of a more realistic quark-gluon vertex.
- Calculations for the case of total angular momentum J=1, so the ρ -meson can be studied.