Light Meson Structure from
 Basis Light-front Quantization

Jiangshan Lan*, Hengfei Zhao*, Kaiyu Fu*, Chandan Mondal*, Xingbo Zhao*, James P. Vary \dagger

*Institute of Modern Physics, CAS, Lanzhou, China
\dagger Iowa State University, Ames, US

Outline

- Basis Light-front Quantization approach
- Application to π and K
- Leading Fock sector (based on NJL interacton)
- With one dynamical gluon
- Summary and Future Plan

Light-front Quantization

[Dirac, 1949]

Equal time quantization $t \quad x^{0}$	Light-front quantization $t \quad x^{+}=x^{0}+x^{3}$
x^{1}, x^{2}, x^{3}	$\begin{gathered} x^{-}=x^{0}-x^{3} \\ x^{\perp}=x^{1,2} \end{gathered}$
P^{0}, \vec{P}	$\begin{gathered} P^{-}=P^{0}-P^{3} \\ P^{+}=P^{0}+P^{3}, P^{\perp}=P^{1,2} \end{gathered}$
$\left.i-\left\|{ }_{t}\right\|(t)\right\rangle=H\|\quad(t)\rangle$	$i \frac{}{x^{+}}\left\|\quad\left(x^{+}\right)\right\rangle=\frac{1}{2} P\left\|\left(x^{+}\right)\right\rangle$
$P^{0}=\sqrt{m^{2}+\bar{P}^{2}}$	$P=\frac{m^{2}+P^{2}}{P^{+}}$

Advantages:

- Frame-independent wave functions
- Direct access to parton distributions
- Simple vacuum structure
- No square root in Hamiltonian P^{-}

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \hat{O}|\beta\rangle
$$

- Fock sector expansion
- Eg. $\quad|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} g g\rangle+d|q \bar{q} q \bar{q}\rangle+\ldots$.
- Discretized basis
- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$.
- Longitudinal: plane-wave basis, labeled by k.
- Basis truncation:

$$
\begin{gathered}
\sum_{i}\left(2 n_{i}+\left|m_{i}\right|+1\right) \leq N_{\max } \\
\sum_{i} k_{i}=K
\end{gathered}
$$

$N_{\text {max }}, K$ are basis truncation parameters.
Large $N_{\max }$ and K : High UV cutoff \& low IR cutoff

Light-front QCD Hamiltonian

$$
\begin{aligned}
P_{L F Q C D}^{-} & =\frac{1}{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} \frac{\left(\mathrm{i} \partial^{\perp}\right)^{2}+m^{2}}{\mathrm{i} \partial^{+}} \widetilde{\psi}-A_{a}^{i}\left(\mathrm{i} \partial^{\perp}\right)^{2} A_{i a} \\
& -\frac{1}{2} g^{2} \int d^{3} x \operatorname{Tr}\left[\widetilde{A}^{\mu}, \widetilde{A}^{\nu}\right]\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right] \\
& +\frac{1}{2} g^{2} \int d^{3} x \widetilde{\widetilde{\psi}} \gamma^{+} T^{a} \widetilde{\psi} \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}} \widetilde{\widetilde{\psi}} \gamma^{+} T^{a} \widetilde{\psi} \\
& -g^{2} \int d^{3} x \widetilde{\tilde{\psi}} \gamma^{+}\left(\frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right]\right) \widetilde{\psi} \\
& +g^{2} \int d^{3} x \operatorname{Tr}\left(\left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right] \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \tilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right]\right) \\
& +\frac{1}{2} g^{2} \int d^{3} x \widetilde{\widetilde{\psi}} \widetilde{A} \frac{\gamma^{+}}{\mathrm{i} \partial^{+}} \tilde{A} \tilde{\psi} \\
& +g \int d^{3} x \widetilde{\psi} \widetilde{A} \tilde{\psi} \\
& +2 g \int d^{3} x \operatorname{Tr}\left(\mathrm{i} \partial^{\mu} \widetilde{A}^{\nu}\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]\right)
\end{aligned}
$$

Outline

- Basis Light-front Quantization approach
- Application to π and K
- Leading Fock sector (based on NJL interacton)
- With one dynamical gluon
- Summary and Future Plan

PDF from BLFQ and QCD Evolution for Light Mesons

$$
P_{\mathrm{eff}}^{-}=\frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{x}+\frac{\overrightarrow{k_{\perp}^{2}}+m_{\bar{q}}^{2}}{1-x}+\kappa^{4} x(1-x) \vec{r}_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+H_{\mathrm{eff}}^{\mathrm{NJL}}
$$

PDF for the valence quark result from the light-front wave functions obtain by diagonalizing the effective Hamiltonian.

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

Agree with experimental results

The moments of pion valence quark PDF

$$
\left\langle x^{n}\right\rangle=\int_{0}^{1} d x x^{n} f_{v}^{\pi / K}\left(x, \mu^{2}\right), n=1,2,3,4 .
$$

$\langle\boldsymbol{x}\rangle$ @ $4 \mathbf{G e V}^{\mathbf{2}}$	Valence	Gluon	Sea
BLFQ-NJL	$\mathbf{0 . 4 8 9}$	$\mathbf{0 . 3 9 8}$	$\mathbf{0 . 1 1 3}$
[Ding et. al., BSE model 2019']	$0.48(3)$	$0.41(2)$	$0.11(2)$

Agree with other results

Outline

- Basis Light-front Quantization approach
- Application to π and K
- Leading Fock sector (based on NJL interacton)
- With one dynamical gluon
- Summary and Future Plan

$$
|\pi\rangle=|q \bar{q}\rangle_{1}^{1}+\cdots
$$

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{\prime}+\cdots
$$

Interaction Part of Hamiltonian

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{\mid}^{1}+\cdots
$$

H_{int}	$\|q \bar{q}\rangle$	$\|q \bar{q} g\rangle$
$\langle q \bar{q}\|$	$\cdots \sigma^{6}$	$\sigma^{\sigma^{6^{6}}}$
$\langle q \bar{q} g\|$	$\ldots \sigma^{6^{6^{6}}}$	0

$$
\begin{aligned}
P^{-}= & \frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{x}+\frac{\overrightarrow{k_{\perp}^{2}}+m_{q}^{2}}{1-x}+\kappa^{4} x(1-x) \vec{r}_{\perp}^{2} \\
& -\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+\boldsymbol{H}_{\mathrm{int}}
\end{aligned}
$$

Mass spectrum

Parameters fixed by fitting six blue states

Mass spectrum

norm $q \bar{q}{ }_{\mathrm{DC}}[\mathrm{MeV}]$

- $\pi_{1}(1400):|q \bar{q} g\rangle$ dominates
- $\pi(1300)$: the DC is smaller than the DC of pion
[Lan, et al, in preparation]

Pion mass, DC, Radii

$\left\langle r_{c}^{2}\right\rangle=-\left.6 \frac{\partial}{\partial Q^{2}} F\left(Q^{2}\right)\right\|_{Q^{2} \rightarrow 0}$	$\langle 0\| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi(0)\|P(p)\rangle=\mathrm{i} p^{+} f_{P}$,
$F\left(Q^{2}\right)=\sum_{i} \int d x_{i} H\left(x_{i}, 0, Q^{2}\right)$	$\langle 0\| \bar{\psi}(0) \gamma^{+} \psi(0)\|V(p, \lambda)\rangle=e_{\lambda}^{+} M_{V} f_{V}$.

	$\boldsymbol{m}_{\boldsymbol{\pi}^{+}}[\mathrm{MeV}]$	$\boldsymbol{m}_{\boldsymbol{\rho}^{+}}[\mathrm{MeV}]$	$f_{\pi^{+}}[\mathrm{MeV}]$	$\boldsymbol{f}_{\boldsymbol{\rho}^{+}}[\mathrm{MeV}]$	$\left.\sqrt{\left\langle r_{c}^{2}\right\rangle}\right\|_{\pi^{+}}[\mathrm{fm}]$	$\begin{gathered} \text { norm } \\ q \bar{q} \end{gathered}$
BLFQ	139.57	775.26	138.2	129.0	0.516~1.456	0.492
PDG	${ }_{\text {al }}^{139.57(2018)]}$	775.26 ± 0.25	130.2 ± 1.7	221 ± 2	0.672 ± 0.008	
BLFQ-NJL [Jia, Vary, PR	$\begin{gathered} 139.57 \\ C(2018)] \end{gathered}$	775.23 ± 0.04	202.10/ $\sqrt{2}$	100.12/ ${ }^{2}$	0.68 ± 0.05	

BLFQ

$$
\begin{gathered}
N_{\max }=14, K_{\max }=15, M_{J}=0 \\
m_{\mathrm{q}}=0.39 \mathrm{GeV}, m_{\mathrm{g}}=0.60 \mathrm{GeV}, \\
\kappa=0.65 \mathrm{GeV}, b=0.29 \mathrm{GeV} \\
\alpha_{s}=0.293, m_{\mathrm{f}}=5.69 \mathrm{GeV}
\end{gathered}
$$

Pion Electromagnetic Form Factor

- No parameter fitting for form factor
- $\mathrm{F}\left(\mathrm{Q}^{2}\right) \propto 1 / \mathrm{Q}^{2}$ for large Q^{2}, consistent with pQCD
[Lan, et al, in preparation]

Pion PDA

- Endpoint behavior agrees with pQCD

[Jia and Vary, PRC 99, 035206 (2019]

Pion initial PDF

$$
\begin{array}{clll}
\mu_{0 B L F Q-\mathrm{NJL}}^{2}=0.240 \mathrm{GeV}^{2} & \langle x\rangle_{\text {gluon }}=0 ; & \langle\boldsymbol{x}\rangle_{\text {valence } \boldsymbol{u}}=\mathbf{0 . 5} & (1-x)^{0.596} \\
\mu_{0 \mathrm{BLFQ}}^{2}=0.34 \mathrm{GeV}^{2} & \langle x\rangle_{\text {gluon }}=\mathbf{0 . 2 1 6 ;} & \langle\boldsymbol{x}\rangle_{\text {valence } \boldsymbol{u}}=\mathbf{0 . 3 9 2} & (1-x)^{1.4}
\end{array}
$$

Pion PDF
$|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{1}^{\mid}+\cdots$

- Large-x behavior $(1-x)^{1.77}$ closer to pQCD [Lan, et al, in preparation]

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\begin{equation*}
\pi^{ \pm} N \rightarrow J / \psi X \tag{nCTEQ2015}
\end{equation*}
$$

Agree with experimental data (FNAL E672, E706).
[Lan, et al, in preparation]
Preliminary

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\pi \pm N \rightarrow J / \psi X \quad[\text { nCTEQ 2015] }
$$

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\begin{equation*}
\pi^{ \pm} N \rightarrow J / \psi X \tag{nCTEQ2015}
\end{equation*}
$$

Agree with experimental data (CERN NA3).
[Lan, et al, in preparation] Preliminary

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\pi \pm N \rightarrow J / \psi X \quad[\text { nCTEQ 2015] }
$$

Agree with experimental data (CERN W11).
[Lan, et al, in preparation] Preliminary

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\pi^{ \pm} N \rightarrow J / \psi X
$$

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024];
[P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
\pi^{ \pm} N \rightarrow J / \psi X
$$

$$
\frac{d \sigma}{d x_{F}} \left\lvert\, J / \psi=F \sum_{i, j=q, \bar{q}, g} \int_{2 m_{c}}^{2 m_{D}} d M_{c \bar{c}} \frac{2 M_{c \bar{c}}}{s \sqrt{x_{F}^{2}+\frac{4 M_{c \bar{c}}^{2}}{S}}} \hat{\sigma}_{i j}\left(s, M_{c \bar{c}}^{2}, \mu_{R}^{2}\right) f_{i}^{\pi^{ \pm}}\left(x_{1}, \mu_{F}\right) f_{j}^{N}\left(x_{2}, \mu_{F}\right)\right.
$$

$>$ F: the same of F from $\mathrm{J} / \psi, \pi^{-}+\mathrm{C} 190 \mathrm{GeV}$
> Band: F with $\pm 20 \%$

Pion Structure function

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle_{\mathbf{I}}^{I}+\cdots
$$

$$
F_{2}^{\pi}\left(\beta, \mu^{2}\right)=\sum_{q, g} e_{q}^{2} \beta\left\{f_{q}^{\pi}\left(\beta, \mu^{2}\right)+f_{\bar{q}}^{\pi}\left(\beta, \mu^{2}\right)+\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}\left[C_{q, 2} \otimes\left(f_{q}^{\pi}+f_{\bar{q}}^{\pi}\right)+2 C_{g, 2} \otimes f_{g}^{\pi}\right]\right\}
$$

- DESY-HERA-H1 (prd 09')
- BLFQ-NJL (prd 20')
- BLFQ
better than BLFQ-NJL results
$>$ Higher initial scale
$>$ Less gluon/sea quark at small x
in future

$$
|\pi\rangle=a|q \bar{q}\rangle+b|q \bar{q} g\rangle+c|q \bar{q} q \bar{q}\rangle_{\mathbf{1}}^{\|_{1}}+\cdots
$$

Kaon Spectrum

Kaon Form Factor

$$
F\left(Q^{2}\right)=\sum_{i} \int d x_{i} H\left(x_{i}, 0, Q^{2}\right)
$$

Preliminary: based on leading Fock Sector WF

Kaon PDA

Preliminary

Kaon initial PDF

PDF_{K}

$$
\begin{array}{|lc|}
\hline & u \text { large } x \\
\mu_{0 B L F Q-N J L}^{2}=0.247 \mathrm{GeV}^{2}\langle x\rangle_{\text {gluon }}=0 ;\langle\boldsymbol{x}\rangle_{\text {valence } \boldsymbol{u}}=\mathbf{0 . 4 6 8 ;}\langle\boldsymbol{x}\rangle_{\text {valence } s}=\mathbf{0 . 5 3 2} & (\mathbf{1}-\boldsymbol{x})^{0.8546} \\
\mu_{0 \mathrm{BLFQ}}^{2}=0.47 \mathrm{GeV}^{2} & \langle\boldsymbol{x}\rangle_{\text {gluon }}=\mathbf{0 . 1 6 2 ;}\langle\boldsymbol{x}\rangle_{\text {valence } \boldsymbol{u}}=\mathbf{0 . 3 5 3 ;}\langle\boldsymbol{x}\rangle_{\text {valence } s}=\mathbf{0 . 4 8 5} \\
(\mathbf{1}-\boldsymbol{x})^{1.92} \\
\hline
\end{array}
$$

Kaon PDF

$$
|K\rangle=a|u \bar{s}\rangle+b|u \bar{s} g\rangle_{1}+\cdots
$$

Kaon PDF

Preliminary

Kaon PDF

J / ψ production cross section

[Wen-Chen Chang, et al, PRD 102 (2020) 054024]; [P. Nason, et al, NPB 303 (1988) 607];
[M. L. Mangano, et al, NPB 405 (1993) 507]

$$
K^{ \pm} C(W) \rightarrow J / \psi X \quad \text { [nCTEQ 2015] }
$$

$>\mathrm{F}:$ set $\mathrm{Br} * \sigma=3.3 \mathrm{nb}$ from $J / \psi, K^{-}+\mathrm{C} 100 \mathrm{GeV}$
$>$ Band: F with $\pm 20 \%$

Kaon Structure function

- Difference in structure function at small x

Conclusions

- Lightfront Hamiltonian approach: mass spectrum \Longleftrightarrow structure
- Compared to NJL interaction, dynamical gluon in light meson:
\checkmark Explains the properties of exotic state $\pi_{1}(1400)$
\checkmark Improves endpoint behavior in PDF/PDA
\checkmark Generates more gluon at moderate $x /$ less gluon at small x
\checkmark Improves π structure function at small x
- Systematically expandable by including higher Fock sectors

$$
\mid \text { Meson }\rangle=|q \bar{q}\rangle+|q \bar{q} g\rangle+|q \bar{q} q \bar{q}\rangle+\cdots
$$

Thank you!

