Light Meson Structure from Basis Light-front Quantization

Jiangshan Lan*, Hengfei Zhao*, Kaiyu Fu*, Chandan Mondal*, Xingbo Zhao*, James P. Vary†

*Institute of Modern Physics, CAS, Lanzhou, China † Iowa State University, Ames, US

Perceiving the Emergence of Hadron Mass through AMBER@CERN 4/28/2021

<u>Outline</u>

- Basis Light-front Quantization approach
- Application to π and K
 - Leading Fock sector (based on NJL interacton)
 - With one dynamical gluon

• Summary and Future Plan

Light-front Quantization

[Dirac, 1949]

Advantages:

- Frame-independent wave functions
- Direct access to parton distributions
- Simple vacuum structure
- No square root in Hamiltonian P⁻

Basis Light-front Quantization

Nonperturbative eigenvalue problem

[Vary et al, 2008]

 $P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$

- *P*⁻: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-} : eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

 $\boldsymbol{O}\equiv\left\langle \boldsymbol{\beta}\right| \hat{\boldsymbol{O}} \left| \boldsymbol{\beta} \right\rangle$

- Fock sector expansion
 - Eg. $|\mathbf{\pi}\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + c|q\bar{q}gg\rangle + d|q\bar{q}q\bar{q}\rangle + \dots$
- Discretized basis
 - Transverse: 2D harmonic oscillator basis: $\Phi_{n,m}^{b}(\vec{p}_{\perp})$.
 - Longitudinal: plane-wave basis, labeled by k.
 - Basis truncation:

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{max},$$

$$\sum_{i} k_i = K.$$

 N_{max} , K are basis truncation parameters.

Large N_{max} and K: High UV cutoff & low IR cutoff

Light-front QCD Hamiltonian

$$\begin{split} P_{LFQCD} &= \frac{1}{2} \int d^3 x \overline{\widetilde{\psi}} \overline{\gamma}^+ \frac{(\mathrm{i}\partial^\perp)^2 + m^2}{\mathrm{i}\partial^+} \widetilde{\psi} - A_a^i (\mathrm{i}\partial^\perp)^2 A_{ia} \\ &- \frac{1}{2} g^2 \int d^3 x \mathrm{Tr} \left[\widetilde{A}^\mu, \widetilde{A}^\nu \right] \left[\widetilde{A}_\mu, \widetilde{A}_\nu \right] \\ &+ \frac{1}{2} g^2 \int d^3 x \overline{\widetilde{\psi}} \overline{\gamma}^+ T^a \widetilde{\psi} \frac{1}{(\mathrm{i}\partial^+)^2} \overline{\widetilde{\psi}} \overline{\gamma}^+ T^a \widetilde{\psi} \\ &- g^2 \int d^3 x \overline{\widetilde{\psi}} \overline{\gamma}^+ \left(\frac{1}{(\mathrm{i}\partial^+)^2} \left[\mathrm{i}\partial^+ \widetilde{A}^\kappa, \widetilde{A}_\kappa \right] \right) \widetilde{\psi} \\ &+ g^2 \int d^3 x \mathrm{Tr} \left(\left[\mathrm{i}\partial^+ \widetilde{A}^\kappa, \widetilde{A}_\kappa \right] \frac{1}{(\mathrm{i}\partial^+)^2} \left[\mathrm{i}\partial^+ \widetilde{A}^\kappa, \widetilde{A}_\kappa \right] \right) \\ &+ \frac{1}{2} g^2 \int d^3 x \overline{\widetilde{\psi}} \widetilde{\widetilde{A}} \widetilde{\psi} \\ &+ g \int d^3 x \overline{\widetilde{\psi}} \widetilde{\widetilde{A}} \widetilde{\psi} \\ &+ 2g \int d^3 x \mathrm{Tr} \left(\mathrm{i}\partial^\mu \widetilde{A}^\nu \left[\widetilde{A}_\mu, \widetilde{A}_\nu \right] \right) \end{split}$$

<u>Outline</u>

- Basis Light-front Quantization approach
- Application to π and K
 - Leading Fock sector (based on NJL interacton)
 - With one dynamical gluon
- Summary and Future Plan

PDF from BLFQ and QCD Evolution for Light Mesons

$$P_{\rm eff}^{-} = \frac{\overline{k_{\perp}^2} + m_q^2}{x} + \frac{\overline{k_{\perp}^2} + m_{\bar{q}}^2}{1 - x} + \kappa^4 x (1 - x) \vec{r}_{\perp}^2 - \frac{\kappa^4}{\left(m_q + m_{\bar{q}}\right)^2} \partial_x (x(1 - x) \partial_x) + H_{\rm eff}^{\rm NJL}$$

PDF for the valence quark result from the light-front wave functions obtain by diagonalizing the effective Hamiltonian.

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

Agree with experimental results

The moments of pion valence quark PDF

$$\langle x^n \rangle = \int_0^1 dx \ x^n f_v^{\pi/K}(x,\mu^2), \ n = 1, 2, 3, 4.$$

$\langle x \rangle$ @ 4 GeV ²	Valence	Gluon	Sea
BLFQ-NJL	0.489	0.398	0.113
[Ding et. al., BSE model 2019']	0.48(3)	0.41(2)	0.11(2)

Agree with other results

[Lan, Mondal, Jia, Zhao, Vary, PRD101,034024(2020)]

<u>Outline</u>

• Basis Light-front Quantization approach

- Application to π and K
 - Leading Fock sector (based on NJL interacton)
 - With one dynamical gluon
- Summary and Future Plan

$$|\pi\rangle = |q\bar{q}\rangle + \cdots$$

$$|\pi\rangle = a |q\bar{q}\rangle + b |q\bar{q}g\rangle + \cdots$$

Interaction Part of Hamiltonian

$$|\pi\rangle = a |q\bar{q}\rangle + b |q\bar{q}g\rangle + \cdots$$

$$P^{-} = \frac{\vec{k_{\perp}^{2}} + m_{\bar{q}}^{2}}{x} + \frac{\vec{k_{\perp}^{2}} + m_{\bar{q}}^{2}}{1 - x} + \kappa^{4} x (1 - x) \vec{r_{\perp}^{2}} - \frac{\kappa^{4}}{(m_{q} + m_{\bar{q}})^{2}} \partial_{x} (x (1 - x) \partial_{x}) + H_{\text{int}}$$

Mass spectrum

Parameters fixed by fitting six blue states

[Lan, et al, in preparation]

13

Preliminary

Mass spectrum

 $\operatorname{norm} q \overline{q}_{\operatorname{DC[MeV]}}$

14

Preliminary

- $\pi_1(1400) : |q\bar{q}g\rangle$ dominates
- $\pi(1300)$: the DC is smaller than the DC of pion

[Lan, et al, in preparation]

Pion mass, DC, Radii

$\langle r_c^2 \rangle = -6 \frac{\partial}{\partial Q^2} F(Q^2) _{Q^2 \to 0}$			$\langle 0 \bar{\psi}(0)\gamma^+\gamma_5\psi(0) P(p) angle = \mathrm{i}p^+f_P,$ $\langle 0 \bar{\psi}(0)\gamma^+\psi(0) V(p,\lambda) angle = e_\lambda^+M_Vf_V.$				
$F(Q^2) = \sum_i \int dx_i H(x_i, 0, Q^2)$ $\boldsymbol{m_{\pi^+} [MeV]} \boldsymbol{m_{\rho^+} [MeV]}$					norm		
BLFQ	139.57	775.26	138.2	129.0	0.516~1.456	qq 0.492	
PDG [Tanabashi, et	139.57 al, PRD(2018)]	775.26 <u>+</u> 0.25	130.2 <u>+</u> 1.7	221 <u>+</u> 2	0.672±0.008		
BLFQ-NJL [Jia, Vary, PRO	139.57 C(2018)]	775.23 <u>±</u> 0.04	202.10/√2	100.12/√2	0.68±0.05		

BLFQ

Pion Electromagnetic Form Factor

- No parameter fitting for form factor
- $F(Q^2) \propto 1/Q^2$ for large Q², consistent with pQCD

[Lan, et al, in preparation]

Preliminary

Pion PDA

Endpoint behavior agrees with pQCD

Pion initial PDF

Pion PDF

 $|\pi\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + \cdots$

Large-x behavior (1 - x)^{1.77} closer to pQCD
 [Lan, et al, in preparation]

Preliminary

[Lan, et al, in preparation] Preliminary

Agree with experimental data (CERN W11).

[Lan, et al, in preparation] Preliminary

Pion Structure function

Kaon Spectrum

Preliminary

Kaon Form Factor

Preliminary: based on leading Fock Sector WF

[Lan, et al, in progress]

Kaon PDA

[Lan, et al, in progress]

Preliminary

Kaon PDF

[Lan, et al, in progress]

F: set Br * $\sigma = 3.3$ nb from J/ψ , $K^- + C 100$ GeV
Band: F with ±20%

[Lan, et al, in progress]

Kaon Structure function $\underline{ep \longrightarrow e' X \Sigma^0}(\Lambda^0)$ 0.5 BLFQ $\mathbf{F}_{2}^{L\Sigma^{0}(\Lambda^{0})}$ 0.4 **BLFQ-NJL** 0.3 0.2 .S.EIC 10×100 GeV $\mu^2 = 20 \text{ GeV}^2$ EicC 3.5×20 GeV² JLab 12 GeV 0²/ GeV² 1.S.EIC 101 10⁻¹ 10-4 10-3 10-2 10-1 100 Fraction of Momentum x EIC?

Difference in structure function at small x •

Conclusions

- Lightfront Hamiltonian approach: mass spectrum + structure
- Compared to NJL interaction, dynamical gluon in light meson:
 - ✓ Explains the properties of exotic state $\pi_1(1400)$
 - ✓ Improves endpoint behavior in PDF/PDA
 - ✓ Generates more gluon at moderate x/less gluon at small x
 - ✓ Improves π structure function at small x

• Systematically expandable by including higher Fock sectors

 $|\text{Meson}\rangle = |q\bar{q}\rangle + |q\bar{q}g\rangle + |q\bar{q}q\bar{q}\rangle + \cdots$

Thank you ! Questions/suggestions: xbzhao@impcas.ac.cn