Perceiving the Emergence of Hadron Mass through AMBER@CERN

27 April to 30 April 2021 CERN, Geneve - Switzerland

Round-table – Instrumentation for AMBER/Dimuons studies

Stephane Platchkov, Apr. 30, 2021 (On behalf of the AMBER collaboration)

Summary slide

- Map out the pion parton structure at large x, (x > 0.1)
 - 1) DY data : separate valence and sea distributions in the pion
 - Data with BOTH positive and negative pion beams compare cross sections
 - 2) J/ ψ and ψ ' data : infer pion valence and gluon distributions
 - Separate J/ ψ and ψ ' –
- ◆ Nuclear dependence at large x
 - Improve our knowledge of the EMC effect first look at the flavor dependence of the nuclear mean field
 - Data with BOTH positive and negative pion beams compare cross sections

These three fundamental measurements will be achieved using the same data set

CEA - Saclay

- AMBER Phase I
 - Better beam particle identification (partly done, to be continued)
 - Better mass resolution (urgently needed)
 - Better trigger efficiency (future performances should be maximized)
 - Good luminosity measurement (aim at cross sections measurements < 3-5%)

• Remarks on the measurement of charmonium states (other than J/psi)

1) Beam particle identification - CEDARs

CEA - Saclay

◆ Beam composition CERN/M2 line

Momentum	Positive beams			Negative beams		
(GeV/c)	π^+	K^+	p	π^{-}	K^{-}	$ar{p}$
100	0.618	0.015	0.367	0.958	0.018	0.024
160	0.360	0.017	0.623	0.966	0.023	0.011
190	0.240	0.014	0.746	0.968	0.024	0.008
200	0.205	0.012	0.783	0.969	0.024	0.007

- Secondary beams are not pure beams
 - Two Cerenkov counters identify the beam hadron
 - Need good efficiency (>90%) and good purity (90%)
- ◆ Beam trackers (Si?) necessary to reconstruct beam tracks
 - Better definition of the beam trajectory

2) Good mass resolution (with an absorber installed)

CEA - Saclay

- ◆ COMPASS-type resolution (MC estimates)
 - NH₃ : 143 MeV
 - AI : 223 MeV
 - W : 351 MeV

These numbers are too large and not enough to separate J/ψ and ψ '

- ♦ A vertex detector (nb of stations?) should improve the resolution by at least a factor of 2:
 - high counting rate capability
 - good time resolution (\lesssim 10 ns)
 - good spatial resolution (< 100 μm)

Beam

Improved trigger and veto system

- Trigger efficiency
 - Optimal scintillator efficiency: > 95%
 - Optimized coincidence: > 95%
 - Total efficiency: aim at > 90%
- Veto dead time
 - Optimized veto dead time (< 10%)

Improved trigger and veto life time means improved statistical accuracy

Charmonium states identification

- ψ ': Amber Phase-1
 - can be measured simultaneously with J/psi
 - $\Delta E \simeq 100 \text{ MeV}$
 - requires a vertex detector
- χ_c states: Amber Phase-2
 - detect photon and J/psi in coincidence
 - very good resolution needed, $\Delta E \simeq 15 \text{ MeV}$
 - ► no absorber
- η_c state: Amber Phase-2
 - e.g.: detect p and \bar{p} (BR = 1.5 10^{-3})
 - ► no absorber

.

HERA-B experiment

8