Hadron structure measurements at the M2 beamline at CERN

Vincent Andrieux on behalf of the AMBER collaboration

University of Illinois at Urbana-Champaign

Perceiving the emergence of hadron mass

Projections for valence/sea separation for Kaons

- Map valence and sea content in the kaons: $R_{s/v} = \frac{\sigma^{K^+C}}{\sigma^{K^-C} - \sigma^{K^+C}}, \text{ Londergan, et al. PLB 380 (1996)}$
- \bullet Assuming the intensity for K^+ and K^-: $2\times 10^7~s^{-1}$

Complementarity between measurements and setups

Determine the gluon content in the Kaon

Open spectrometer \rightarrow access to ψ' and $\chi_{\textit{c}}$ states

- Extensive study of charmonia production mechanisms
- Additional input for gluon PDF in the Kaons

Possibility to study valence proton TMD PDFs in a model free way

- cross-sections for \bar{p} induced-DY at 120 GeV $\sim \pi^-$ induced-DY at 190 GeV
- Combined statistics from $\mu^+\mu^-$ and e^+e^- channels \sim 2 years of COMPASS-II data taking

• With active absorber: better acceptance in θ_{CS}

Experiment	Target type	Beam type	Beam intensity (part/sec)	Beam energy (GeV)	DY mass (GeV/c²)	DY e $\mu^+\mu^-$	vents e^+e^-
This exp.	110cm NH_3	p	$3.5 imes10^7$	100 120 140	4.0 - 8.5 4.0 - 8.5 4.0 - 8.5	28,000 40,000 52,000	21,000 27,300 32,500

• AMBER can perform key measurement to determine the structure of the Kaon

• Proton structure will not be left over and studies of TMD PDFs are foreseen

E615, NA10 data and large x behaviour

M. Aicher, *et al.*, PRL 105 252003 (2010)

State of the art of the theory

BACKUP

 Letter of Intent arXiv:1808.00848
DY, Spectroscopy, muon-p elastics scattering, . . .

• A web page

New ideas and collaborators are welcome Proposal available

Anti-proton beam: Synergy DY and SIDIS

Additional insight with \bar{p} on Boer Mulders (private exchange with Andreas Metz)

- Transversity modulation less affected by QCD radiative effects
- Smooth matching between TMD approach and QCD
- \rightarrow Extract transversity from SIDIS $A_{UT}^{sin(\phi_h+\phi_S)} \propto h_{1,p}^q \otimes H_{1q}^{\perp h}$ measurements

Obtain Boer-Mulders $h_1^{\perp q}$ for proton and meson with antiproton and meson beams Complementary to SIDIS, where Cahn effects can be difficult to disentangle from Boer-Mulders effects

Renewed interest in pion structure

- Agreement between DSE and fit to E615 data at NLO+NLL
- First extraction of PDFs with Hera data (DIS with leading neutron)
- Foreseen measurement of Tagged DIS at JLab and at EIC

Aim for direct data in the circled area

Pion induced Drell-Yan statistics for 2 years

Experiment	Target type	Beam energy (GeV)	Beam type	Beam intensity (part/sec)	DY mass (GeV/c^2) $$	DY events
E615	20cm W	252	π^+ π^-	$\begin{array}{c} 17.6 \times 10^{7} \\ 18.6 \times 10^{7} \end{array}$	4.05 - 8.55	5,000 30,000
NA3	30cm H_2	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.1 - 8.5	40 121
	бст Pt	200	π^+ π^-	$\begin{array}{c} 2.0\times10^7\\ 3.0\times10^7\end{array}$	4.2 - 8.5	1,767 4,961
NA10	120cm D_2	286 140	π^{-}	$65 imes 10^7$	4.2 - 8.5 4.35 - 8.5	7,800 3,200
	12cm W	286 140	π^{-}	$65 imes10^7$	4.2 - 8.5 4.35 - 8.5	49,600 29,300
COMPASS 2015 COMPASS 2018	110cm NH_3	190	π^{-}	$7.0 imes10^7$	4.3 - 8.5	35,000 45,000
This exp	100cm C	190	π^+	$1.7 imes 10^7$	4.3 - 8.5 3.8 - 8.5	23,000 37,000
		190	π^{-}	$6.8 imes10^7$	4.3 – 8.5 3.8 – 8.5	22,000 34,000
	24cm W	190	π^+	$0.2 imes 10^7$	4.3 – 8.5 3.8 – 8.5	7,000 11,000
		190	π^{-}	$1.0 imes10^7$	4.3 - 8.5 3.8 - 8.5	6,000 9,000

Use of lighter and isoscalar target as compared to past experiments