Round-table discussion Measuring spectra of unstable states, including those with strangeness @ AMBER

- Diffractive production using high-intensity high-energy RF-separated kaon beam on proton and nuclear targets
- All states (except $J^P = 0^+$) directly accessible
- $J^P = 0^+$ states may be studied in subsystems of multi-body final states
- Same method also allows us to study final-state interactions
- All major decay modes accessible
- Goal: $10 \times \text{world data}$
- Already the 2.4% K^- component of the current hadron beam at COMPASS yielded competitive data samples
- We can build on extensive experience in studying diffractive production of light mesons at COMPASS

Round-table discussion Measuring spectra of unstable states, including those with strangeness @ AMBER

Round-table discussion Measuring spectra of unstable states, including those with strangeness @ AMBER

