LAr calorimeter R&D for FCC-ee Readout Electrode Studies

Brieuc François (CERN) LAr Calo for FCC working meeting April. 1st, 2021

Introduction

- FCC-ee physics program would greatly benefit from measuring low energy (~300 MeV) photons
- Noise term dominates for low energies

$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- > A fraction of this noise comes from the signal pad capacitance to ground
 - Important to precisely evaluate these capacitances

ANSYS

- ANSYS (mutli-physics software) EM Desktop
 - Includes SIWave (signal integrity), Maxwell (finite element solver of Maxwell equations), and much more
 - Plan: derive capacitance from Maxwell, derive S parameters from another tool (or an equivalent circuit)
- > The cadence model could be imported into ANSYS Maxwell
 - Different procedure than for ANSYS SIWave (needed a different dataformat)
 - Cadence model was too detailed to be solved in Maxwell
 - > All vias have been changed to plain copper cylinder
 - Removed the via at the end of the signal trace (no impact on capacitance)
 - Removed the ground plates

PCB geometrical parameters

- Trace thickness: 35 um
- Trace width: 127 um
- Shield width: 250 um
- Assumptions
 - No E field solver inside ≻ copper
 - Tried with, takes longer ۶ to compute and does not change the result
 - FR4 as perfect insulator ۶
- FR4 permittivity: 4.4
- Capacitance derivation
 - One volt is applied to a single conductor and zero volts ۶ is applied to all other conductors

Solve the electrostatic field and get capacitance from ۶ energy stored in the electric field

	Name	Type	Negative	Material	Dielectric Fill	Thickness	Etch	Rough	Solver	Lower	Upper	Transparency
	smt	dielectric		FR4_epoxy		Oum			Г	1.285mm	1.285mm	60
-	top	signal		copper	FR4_epoxy	35um				1.25mm	1.285mm	60
	dielectric_0	dielectric		FR4_epoxy		100um				1.15mm	1.25mm	60
-	12	signal		copper	FR4_epoxy	35um				1.115mm	1.15mm	60
	dielectric_1	dielectric		FR4_epoxy		250um				0.865mm	1.115mm	60
-	13	signal	~	copper	FR4_epoxy	35um				0.83mm	0.865mm	60
	dielectric_2	dielectric		FR4_epoxy		170um				0.66mm	0.83mm	60
-	14	signal		copper	FR4_epoxy	35um				0.625mm	0.66mm	60
	dielectric_3	dielectric		FR4_epoxy		170um				0.455mm	0.625mm	60
-	15	signal	~	copper	FR4_epoxy	35um				0.42mm	0.455mm	60
	dielectric_4	dielectric		FR4_epoxy		250um				0.17mm	0.42mm	60
-	16	signal		copper	FR4_epoxy	35um				0.135mm	0.17mm	60
	dielectric_5	dielectric		FR4_epoxy		100um				0.035mm	0.135mm	60
-	bottom	signal		copper	FR4_epoxy	35um				0mm	0.035mm	60
	smb	dielectric		FR4_epoxy		Oum				Omm	Omm	60

Was 285 in the Calo for FCC-hh paper

Validation

- Derive capacitance for only one shield and one signal pad (cell 6) – setting all other conductors as dielectric
 - Capacitance from Maxwell: 7 pF
 - Capacitance from analytical formula (link): 5.64 pF
 - Seems reasonable
 - COMSOL comparison also showed that the analytical model undershoots the capacitance
 - > Asked for 5% accuracy in the Maxwell solver

Shield capacitance

- Signal pad / shield capacitances up to cell 7 HV plates as floating conductor
 - Running the shield below the pad separation minimizes the noise in the strip cells
 - Capacitance between shield bottom and signal pad top is O(10%) of the capa(shield top, signal pad top)

Strip line capacitance

Technical issue faced

Strip line capacitance

Mesh is way less dense in the cell 7 region

Solving the mesh issue

- Trials to solve the meshing issue
 - Lower relative error to 1% ĺ
 - Choose another meshing 'strategy' than the default 1
 - Impose maximal segment length in the mesh (0.5 mm)
 - > Applied to the whole volume, even far from copper
 - Insufficient memory to solve 1
 - Can create a fictive region (i.e. not included in the Maxwell solver) and impose the segment length only there ð
 - In order to have an object in the capacitance matrix, one has to set a voltage to him, assigning different voltage values to close-by objects seems to increase mesh density between them ð
- Lesson learned: always check the mesh, the criteria on relative error to reach is not sufficient
- New capacitance between the cell 7 shield and signal trace: 7.6 pF (sum = 15.2, analytical formula: 15.4 pF)

Capacitance extrapolation

- Cell 1 capacitance with shields
 - Signal pad bottom(top): 14 pF
 - Signal via capacitance is negligible: 0.001pF
- Capacitance between signal trace and adjacent shields is also negligible
- If we assume that the signal trace capacitance to ground can be neglected (match impedance)
 - Can derive the capacitance between signal pad and shield "per length unit" and get the whole capacitance based on cell length and number of shield
 - Will probably have to consider one exception for strip cells where shields run beneath the etch
- Avoids to enter manually all the capacitance from Maxwell (way more flexible)!

Capacitance extrapolation

- Capacitance of one signal pad to shield (cumulating top and bottom shield ۶ contribution) from cell 6: 5.07 pF / 48.43 mm = 0.109 pF/mm
 - Obtained with a good meshing ≻
- Extrapolation to the full detector from capacitance per length unit (thanks Jana!) ≻

Signal pads - ground shields capacitance

PCB thickness

- Decided for now to keep a total PCB thickness of 1.2 mm
 - Re-compute the capacitance per unit length with reduced distance between signal pad and shield (207.5 µm instead of 250 µm)
 - 0.123 pF/mm instead of 0.109 pF/mm

	Hamo	Type	Trogative	Matonal	Diciocale Th	THERTIGAS	Luch	nough	JOIVEI	Lower	oppor	Transparency
	smt	dielectric		FR4_epoxy		Oum				1.285mm	1.285mm	60
-	top	signal		copper	FR4_epoxy	35um				1.25mm	1.285mm	60
	dielectric_0	dielectric		FR4_epoxy		100um				1.15mm	1.25mm	60
-	12	signal		copper	FR4_epoxy	35um				1.115mm	1.15mm	60
	dielectric_1	dielectric		FR4_epoxy		250um				0.865mm	1.115mm	60
-	13	signal	~	copper	FR4_epoxy	35um				0.83mm	0.865mm	60
	dielectric_2	dielectric		FR4_epoxy		170um				0.66mm	0.83mm	60
-	14	signal		copper	FR4_epoxy	35um				0.625mm	0.66mm	60
	dielectric_3	dielectric		FR4_epoxy		170um				0.455mm	0.625mm	60
-	15	signal	v	copper	FR4_epoxy	35im				0.42mm	0.455mm	60
	dielectric_4	dielectric		FR4_epoxy		2500m		207.5	um	0.17mm	0.42mm	60
-	16	signal		copper	FR4_epoxy	35um				0.135mm	0.17mm	60
	dielectric_5	dielectric		FR4_epoxy		100um				0.035mm	0.135mm	60
-	bottom	signal		copper	FR4_epoxy	35um				Omm	0.035mm	60
	smb	dielectric		FR4_epoxy		Oum				Omm	Omm	60

Tune Negative Material Dielectric Fill Thickness Boh Bough Schuer Lower Transport

'Final' capacitance

- Capacitance with 1.2 mm thick PCB
- Comparison with the analytical formula
 - > Maxwell extrapolation leads to $\sim 30\%$ higher capacitances
 - Analytical micro-strip capacitance is underestimated (also observed in the previous COMSOL simulation)
 - Bottom shield also contributes
 - > The presence of other conductors has an impact
- Much lower capacitance compared to the previous geometry

Capacitance of shields

FRN

 $|\eta|$

Noise estimation

- Noise estimation
 - $\succ \quad \mathbf{C}_{\text{total}} = \mathbf{C}_{\text{shield}} + \mathbf{C}_{\text{detector}}$
 - > $C_{detector}$ due to capacitance between HV plates and grounded absorber ~ 20-40 pF
 - Derived from analytical formula only capacitance between two plates (less complex environment than for the shields)
 - Decreases with increasing radius (compensating effects: larger LAr gap + bigger surface)

HV plate - absorber capacitance

Total capacitance

- Total capacitance
 - > 50-300 pF
 - Dominated by shield capacitance except in layer 3 to 6

LAr Calorimeter for FCC-ee

brieuc.francois@cern.ch

Noise estimation

in pF

Q 1400

Q 1200

800

Figure 10: Left: expected constributions to cell capacitances as a function of η . Right:

Cells in Eta

Capacitance

Geometry

Crosstalk Cells

Connection

Cells in Eta

- Noise estimation
 - Extrapolation from ATLAS noise/capa
 - > 25 MeV for 1400 pF \rightarrow 0.018 MeV/pF
 - Rescale by the sampling fraction ratio between ATLAS (0.18) and our per layer values
 - > Result: 0.5 4 MeV noise

Default electronic noise: shield + detector capacitance

MIP energy deposit

- No signal attenuation considered, no digitization (energy taken directly from Geant4 deposit and scaled with sampling fraction) – all layers considered together
- MIP energy deposit seems to be on the edge compared to the noise value BUT
 - Has to be studied layer per layer
 - MIP particle can be identified by some kind of 'tracking'
 - e.g. summing cell energy compatible with track patterns
 - Noise will sum in quadrature

ECalBarrelPositionedCells.core.energy {ECalBarrelPositionedCells.core.energy<0.04}

Summary and plans

- Readout electrode capacitance derived from finite-element method simulation (ANSYS Maxwell)
- Derivation of shield capacitance per length and extrapolation to the full detector
- Derivation of capacitance between HV plate and ground absorber (analytical formula)
- Estimation of the noise
- > Plans
 - Implement special prescription for the strip layer
 - Port this new noise estimation to FCCSW
 - Investigate signal attenuation
 - Study MIP energy deposit per layer
 - Derive cross talk
 - SIWave is unfortunately not the proper tool in the end, need to use HFSS
 - Find shield width for which cross-talk is 'reasonable'
 - Re-derive capacitance
 - Perform 'final' noise estimation

Additional material

Capacitances between signal pads

> 1 mm 'horizontal' spacing between signal pads

Readout electrodes

Readout electrodes

CERN