

Middleware Concepts and Services in Campus, National and International Grids

Mike Mineter Training Outreach and Education, Edinburgh

www.eu-egee.org

INFSO-RI-508833

- This presentation can be re-used for academic purposes.
- However if you do so then please let <u>training-support@nesc.ac.uk</u> know. We need to gather statistics of re-use: no. of events, number of people trained. Thank you!!

• Concepts: Grids enable "Virtual computing across administrative domains"

• Current middleware in

- International EGEE grid
- National Grid Service
- Campus Grids

Service orientation

- Web services and Grids: "Open Grid Services Architecture"

Grid Middleware

• When using a PC or workstation you

- Login with a username and password ("Authentication")
- Use rights given to you ("Authorisation")
- Run jobs
- Manage files: create them, read/write, list directories
- Components are linked by a bus
- Operating system
- One admin domain

- When using a Grid you
 - Login with digital credentials – single signon ("Authentication")
 - Use rights given you ("Authorisation")
 - Run jobs
 - Manage files: create them, read/write, list directories
- Services are linked by the Internet
- Middleware
- Many admin domains

Typical current grid

Enabling Grids for E-sciencE

- Virtual organisations (collaborations) negotiate with sites to agree access to resources
- Grid middleware runs on each shared resource to provide
 - Data services
 - Computation services
 - Single sign-on
- Distributed services (both people and middleware) enable the grid

The vital layer

Enabling Grids for E-sciencE

Where computer science meets the application communities! **Developments built on higher**level tools and core services Makes Grid services useable by non-specialists Grids provide the compute and data storage resources

Production grids provide these core services.

The many scales of grids

Enabling Grids for E-sciencE

International instruments,... International grid (EGEE) Wider collaboration greater resources National datacentres, **National grids HPC**, instruments (National Grid Service) **Regional grids (e.g.** White Rose Grid) Institutes' data; **Campus grids: PlymGrid Condor pools**

Desktop

EGEE: "Enabling Grids for e-Science"

and the

gLite middleware

INFSO-RI-508833

A four year programme:

- Build, deploy and operate a consistent, robust a large scale production grid service that
 - Links with and build on national, regional and international initiatives
- Improve and maintain the middleware in order to deliver a reliable service to users
- Attract new users from research and industry and ensure training and support for them

Main components

Enabling Grids for E-sciencE

Access service How users logon to a Grid

<u>Resource Broker (RB)</u>: Service that matches the user's requirements with the available resources on a Grid

Information System: Characteristics and status of resources

Computing Element (CE): A batch queue on a site's computers where the user's job is executed

Storage Element (SE): provides (large-scale) storage for files

INFSO-RI-508833

•Submit job to grid via the "resource broker (RB)",

```
•glite_job_submit my.jdl
Returns a "job-id" used to monitor job, retrieve output
```

Example JDL file

Who provides the resources?!

Enabling Grids for E-sciencE

<u>Service</u>	<u>Provider</u>	<u>Note</u>
<u>Access service</u>	User / institute/ VO / grid operations	Computer with client software
<u>Resource Broker</u> (RB)	VO / grid operations	(No NGS-wide RB)
Information System	ditto	
<u>Computing Element</u> (CE)	VO / sometimes centralised provision also	Scalability requires that VOs provide resources to match average need
<u>Storage Element</u> (SE)	ditto	ditto

"VO": virtual organisation

"Grid operations": funded effort

- VDT: Virtual Data Toolkit
 - ensemble of grid middleware that can be easily installed and configured
 - Includes Globus Toolkit, Condor, MyProxy,...
 - Been used by EGEE

http://vdt.cs.wisc.edu/

Grid security and trust

 Providers of resources (computers, databases,...) need risks to be controlled: they are asked to trust users they do not know

• User's need

- single sign-on: to be able to logon to a machine that can pass the user's identity to other resources
- To trust owners of the resources they are using
- Build middleware on layer providing:
 - Authentication: know who wants to use resource
 - Authorisation: know what the user is allowed to do
 - Security: reduce vulnerability, e.g. from outside the firewall
 - Non-repudiation: knowing who did what

• The "Grid Security Infrastructure" middleware is the basis of (most) production grids

INFSO-RI-508833

The National Grid Service

- The core UK grid, resulting from the UK's e-Science programme.
- Production use of computational and data grid resources.
- Supported by JISC

NGS Facilities

- Leeds and Oxford (core compute nodes)
 - 64 dual CPU intel 3.06GHz (1MB cache). Each node: 2GB memory, 2x120GB disk, Redhat ES3.0. Gigabit Myrinet connection. 2TB data server.
- Manchester and Rutherford Appleton Laboratory (core data nodes)
 - 20 dual CPU (as above). 18TB SAN.
- Bristol
 - initially 20 2.3GHz Athlon processors in 10 dual CPU nodes.
- Cardiff
 - 1000 hrs/week on a SGI Origin system comprising 4 dual CPU Origin 300 servers with a Myrinet[™] interconnect.
- Lancaster
 - 8 Sun Blade 1000 execution nodes, each with dual UltraSPARC IIICu processors connected via a Dell 1750 head node.
- Westminster
 - 32 Sun V60 compute nodes
- HPCx

- ...

For more details: http://www.ngs.ac.uk/resources.html

NGS software

- Computation services based on Globus Toolkit
 - Use compute nodes for sequential or parallel jobs, primarily from batch queues
 - Can run multiple jobs concurrently (be reasonable!)
- Data services:
 - Later talk

UK National Grid Service

NGS – The Future

- Middleware recently deployed
 - Portal v2
 - GridSAM alternative job submission and monitoring
- Being deployed
 - VOMS
- Under development
 - Shibboleth integration

Campus "grids"

Harvesting CPU time

Harvesting CPU time - 2

- Enabling Grids for E-sciencE
- Teaching lab machines lie idle for most of the time
- Harvest spare compute cycles to create a low-cost "high throughput computing" (HTC) platform
 - Goal: run many tasks in a week, month, ...
 - Typically: many similar tasks invoked from workflow or a script
 - Monte-Carlo
 - Simulation parameter sweeps
- Pool of processors are a <u>batch processing resource</u>
- Condor most common approach
 - http://www.cs.wisc.edu/condor/
- Job is described in a text file
- "Match-maker" selects appropriate resource

- Resources in many administrative domains
- Need basic services that provide:
 - Authentication, Authorisation mechanisms
 - Based on certificates
 - Single sign-on to access many resources
 - Control of who can do what
 - Job submission services
 - Submit jobs to batch queues on clusters or Condor pools
 - Information systems
 - So you know what can be used
 - Ability to share data

Enabling Grids for E-sciencE

- Condor <u>http://www.cs.wisc.edu/condor/</u>
 - Harvest compute cycles
- Globus toolkit <u>http://www.globus.org/</u>
 - Tools built on Grid Security Infrastructure and include:
 - Job submission: run a job on a remote computer
 - Information services: So I know which computer to use
 - •
- Storage Resource Broker <u>http://www.sdsc.edu/srb/</u>
 - Sharing of files held in SRB vaults in multiple locations
- SRB and Globus Toolkit are part of the National Grid Service stack

Example: OxGrid, a University Campus Grid

- Single entry point for Oxford users to shared and dedicated resources
- Seamless access to National Grid Service and Oxford Supercomputing Centre for registered users
- Single sign-on using PKI technology integrated with current methods

David Wallom

Service oriented middleware

Service orientation – software components that are...

- Accessible across a network
- Loosely coupled, defined by the messages they receive / send
- Interoperable: each service has a description that is accessible and can be used to create software to invoke that service
- Based on standards (for which tools do / could exist)
- Developed in anticipation of new uses

INFSO-RI-508833

CGCC Extending Web Service standards

Enabling Grids for E-sciencE

Web Services

Short-lived Interactions

Call-return interaction

Grids

- Persistence
 - Infrastructure
 - Computation
 - Data
 - People
- also, Event-driven interactions

Need to add to basic web services the notion of persistency

STATEFUL SERVICES

Resources and Event-driven Interaction

- Resource
 - Existence
 - creation
 - identifier
 - deletion
 - lifetime
 - Resource Properties state elements
 - XML representation
 - get
 - put
 - partial get
 - partial put
- Event Driven
 - Subscribe to a topic
 - itself a resource
 - Notify a topic-relevant event

INFSO-RI-508833

Summary

- Widely used middleware:
 - Grid Security Infrastructure:
 - Authorisation and authentication underpins it all
 - Compute services
 - Condor cycle harvesting from pools of processors
 - Globus job submission across administrative domains
 - Data services
 - Growth area !!
 - "Higher level services" built on these
 - Portals,...
- Service orientation
 - Basis of emerging standards built on web services

- Open Grid Forum http://www.gridforum.org/
- Globus Alliance http://www.globus.org/
- VDT <u>http://www.cs.wisc.edu/vdt/</u>
- Grid Today http://www.gridtoday.com/
- The Grid Cafe <u>www.gridcafe.org</u>

- EGEE Conference: 25-29 September 2006
 http://www.eu-egee.org/news/registration-open-for-egee201906-conference-September-2006-geneva/
- EGEE digital library: <u>http://egee.lib.ed.ac.uk/</u>
- EGEE <u>www.eu-egee.org</u>
- EGEE: 1st user Forum
 <u>http://egee-intranet.web.cern.ch/egee-intranet/User-</u>
 <u>Forum</u>
- gLite <u>http://www.glite.org/</u>

NGS Web Sites

- NGS
 - <u>http://www.ngs.ac.uk</u>
 - To see what's happening: <u>http://ganglia.ngs.rl.ac.uk/</u>
 - New wiki service: <u>http://wiki.ngs.ac.uk</u>
 - Training events: http://www.nesc.ac.uk/training
- HPCx
 - <u>http://www.hpcx.ac.uk</u>