ATCA in COMPASS/Belle2/AMBER

Igor Konorov

Institute for Hadronic Structure and Fundamental Symmetries (E18)
TUM Department of Physics
Technical University of Munich

ATCA Workshop, 11-th May 2021
COMPASS iFDAQ

COMPASS DAQ:
- 300k channels
- 40kHz
- 1-2 GB/s in spill
- 300-500MB/s sustained
COMPASS Hardware

Virtex6 FPGA XC6VLX130
- 16x6.5 Gbps links, 4GB DDR3
- TCS interface
- Ethernet IPBus for control and monitoring
- Too few modules for migration to ATCA
- DAQ up time > 99%
Pixel Detector

40 half leaders
- Each 4x1.52 GB/s
- Each connect to one DHE card
- DHC multiplexer card
- DHI control card

Interconnection:
- 1 highspeed link
- Custom UCF protocol multiplexes
 - Trigger
 - Data
 - Ethernet (IPBus)
AMC Cards for Belle2 PXD

- Virtex6 XC6VLX130
- ARTIX 7
DHH System

DHH system:
- 24 FPGA cards
- IPBus for slow control
- CERN IPMC: power ON/OFF
- Data processing bandwidth 100 Gbps
DAQ Evolution Triggered to Free Running

COMPASS iFDAQ
- Detectors
 - Trigger Logic
 - CATCH HGESICA
 - Event Builder
 - DAQ MUX
 - PCs Storage 50 TB
 - CDR

AMBER FriDAQ
- Detectors
 - Digital Filter
 - Data Concentrator
 - Data Concentrator
 - Local Storage, 1-2 PB
 - HLT farm
 - CTA

Igor Konorov
AMBER in ATCA

Strategy:
- Migrate to ATCA
 - Custom carrier ATCA card for COMPASS AMC FPGA cards
 - All FPGA cards have AMC standard

New card XKCU095
- AMC connector for Ethernet and time distribution system
- 32 GB DD4 RAM
- 60 x 16 Gbps
ATCA Experience

- Use of ATCA standard very limited
 - high cooling power, 12V power
 - Backplane high speed links not used
 - Interconnection: RTM for slow control and time distribution system,
 - High speed link via front panel
THANK YOU