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Logistical Storage

• Distributed, scaleable, secure access to data
• “Logistical”

– In the spirit of real-world supply-line management
– Simple, robust, commodity, scaleable, …

• L-Store “Logistical Storage” has 2 parts
– Logistical Networking -- UT Knoxville

• IBP (Internet Backplane Protocol)
• LoRS file tools -- basic metadata management

– Distributed metadata management -- Vanderbilt



What is Logistical Networking?

• A simple, limited, generic storage network service
intended for cooperative use by members of an
application community.
– Fundamental infrastructure element is a storage server or

“depot” running the Internet Backplane Protocol (IBP).
– Depots are cheap, easy to install & operate

• Design of IBP is modeled on the Internet Protocol
• Goal: Design scalability:

– Ease of new participants joining
– Ability for interoperable community to span administrative

domains

- Micah Beck, UT Knoxville



Logistical Networking Stack



LOCI Software System

• IBP Internet Backplane Protocol
– Middleware for managing and

using remote storage
– Allows advanced space and

time reservation
– Supports multiple threads per

depot
– User configurable block size
– Configurable redundancy
– Designed to support large-

scale, distributed systems.
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LoRS Filename Conventions

• The exNode file is an xml description of where each
block/stripe of data resides.
– File blocking/striping completely flexible
– Redundant copies -- automatically try 2,3,…,choices
– Adaptive striping responds to read/write speeds for each depot.

• Currently rudimentary, sometimes inefficient.

• Files represented by local exNodes are referenced using
the local name of their exNode file
– lors://Filename.txt.xnd
– .xnd extension can be implicit



Using IBP with ROOT

 simplified software stack:

eXNode

• Files can be uploaded to IBP with
LoRS or L-Store command-line
tools
–  lors_upload …
–  lors_download …

• LoRS can retrieve data from
exNode information

• Other LoRS tools not used in our
case.



 libxio.so LoRS interface
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 libxio.so plugin for ROOT I/O
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CMSSW, XRootD, IBP

1. Upload your data file to IBP using LoRS
–  lors-upload [myfile.root] [lors flags] [depotlist]
–  exNode file created locally

2. Register your file with XRootD-IBP server
– XRootD with LoRS/libxio plugin enabled
– Currently copy exNode file to XRootD exnode directory

3. Stream your file from IBP directly into your
ROOT I/O-application memory:

– Interactive root session, or
– CMSSW run
– change file URI to “root://my_XRootD_host/filename.xnd”

4. Write out files locally
– Stage them where ever you want afterwards



What is L-Store?
• Provides a file system interface to globally distributed storage

devices (“depots”).
• Parallelism for high performance and reliability.
• Uses IBP (from UTenn) for data transfer & storage service.

– Write: break file into blocks, upload blocks simultaneously to multiple
depots (reverse for reads)

– Generic, high performance, wide area capable, storage virtualization
service

• L-Store utilizes a chord based DHT implementation to provide
metadata scalability and reliability
– Multiple metadata servers increase performance and fault tolerance
– Real time addition/deletion of metadata server nodes allowed

• L-Store supports Weaver Erasure Encoding of stored files
(similar to RAID) for reliability and fault tolerance.
– Can recover files even if multiple depots fail.



Architecture
Goal: provide a distributed name space and storage

•A directory (Directory Ring) is comprised of files (File Ring)
•Each file is comprised of several slices(slice ring)
•Each slice is stored on Media in a Jukebox and accessed via a Mover

•All directories and files have permissions (LACS) and extended attributes
– Depot list, slice size, erasure coding, …

•Each file can have multiple representations.
– Each representation is associated with a service
– A serviceservice is added by providing pluggable modules for the

• Client, X-files, and JukeBox(transfer method)
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REDDnet
Research and Education Data Depot Network

 

•NSF funded project
•8 initial sites
•Multiple disciplines

– Sat imagery
(AmericaView)

– HEP
– Terascale

Supernova Initative
– Structuraly Biology
– Bioinformatics

•Storage
– 500TB disk
– 200TB tape



Future steps

• ROOT LoRS plugin -- bypass XRootD
• Host popular datasets on REDDnet
• Integrate L-Store functionality



Extra Slides



What is L-Store?

• L-Store provides a distributed and scalable namespace for storing
arbitrary sized data objects.

• Agnostic to the data transfer and storage mechanism.  Currently only
IBP is supported.

• Conceptually it is similar to a Database.
• Base functionality provides a file system interface to the data.
• Scalable in both Metadata and storage.
• Highly fault-tolerant.  No single point of failure including a depot.
• Dynamic load balancing of both data and metadata



L-Store Performance

3 GB/s

30 Mins

• Multiple simultaneous writes to 24 depots.
• Each depot is a 3 TB disk server in a 1U case.
• 30 clients on separate systems uploading files.
• Rate has scaled linearly as depots added.
• Planned REDDnet deployment of 167 Depots will be

able to sustain 25 GB/s.



“Data explosion”

•Focus on increasing bandwidth and raw storage
•Assume metadata growth is minimal

– Works great for large files

•For collections of small files the metadata becomes
the bottleneck
•Need ability to scale metadata

•ACCRE examples
– Proteomics: 89,000,000 files totaling 300G
– Genetics: 12,000,000 files totaling 50G in a single

directory

Metadata Raw storage



Probability of data loss with 1% disk failure
(http://elib.cs.berkeley.edu/storage/psi/docs/Petabyte-20040710.ppt)



QoS Requirements

• Availability - Should survive a partial network outage
• Data and Metadata Integrity

– End-to-end conditioning is a must!
• Performance

– Metadata(transactions/s)
– Data(MB/s)

• Security
• Fault Tolerace

– Metadata - mirroring
– Data - multiple complete device failures



WEAVER erasure codes

– Tables supporting up to 10 failures
• Satisfies data fault tolerance requirements

– Vertical erasure code (parity and data stored on same
resource)

– Encoding and Reconstruction times are O(t) where t = fault
tolerance

• Encoding and reconstruction done directly on the depot.
– No decoding time since vertical code

J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems,”
FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005,

http://www.usenix.org/events/fast05.



Simple L-Store architecture based
on a single metadata server



Chord Ring
Distributed Hash Table

– Key (K##) -hash(name)
– Nodes (N##) are distributed

around the ring and are
responsible for the keys
“behind” them.
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Valid key range for
 N32 is 22-32


