
CMS and Logistical Storage

Daniel Engh
Vanderbilt University

FIU Physics Workshop
Feb 8, 2007

Logistical Storage

• Distributed, scaleable, secure access to data
• “Logistical”

– In the spirit of real-world supply-line management
– Simple, robust, commodity, scaleable, …

• L-Store “Logistical Storage” has 2 parts
– Logistical Networking -- UT Knoxville

• IBP (Internet Backplane Protocol)
• LoRS file tools -- basic metadata management

– Distributed metadata management -- Vanderbilt

What is Logistical Networking?

• A simple, limited, generic storage network service
intended for cooperative use by members of an
application community.
– Fundamental infrastructure element is a storage server or

“depot” running the Internet Backplane Protocol (IBP).
– Depots are cheap, easy to install & operate

• Design of IBP is modeled on the Internet Protocol
• Goal: Design scalability:

– Ease of new participants joining
– Ability for interoperable community to span administrative

domains

- Micah Beck, UT Knoxville

Logistical Networking Stack

LOCI Software System

• IBP Internet Backplane Protocol
– Middleware for managing and

using remote storage
– Allows advanced space and

time reservation
– Supports multiple threads per

depot
– User configurable block size
– Configurable redundancy
– Designed to support large-

scale, distributed systems.

Sample exNodes

A B C

0

300

200

100

IBP Depots

Network

3 files uploaded to IBP depots

LoRS Filename Conventions

• The exNode file is an xml description of where each
block/stripe of data resides.
– File blocking/striping completely flexible
– Redundant copies -- automatically try 2,3,…,choices
– Adaptive striping responds to read/write speeds for each depot.

• Currently rudimentary, sometimes inefficient.

• Files represented by local exNodes are referenced using
the local name of their exNode file
– lors://Filename.txt.xnd
– .xnd extension can be implicit

Using IBP with ROOT

 simplified software stack:

eXNode

• Files can be uploaded to IBP with
LoRS or L-Store command-line
tools
– lors_upload …
– lors_download …

• LoRS can retrieve data from
exNode information

• Other LoRS tools not used in our
case.

 libxio.so LoRS interface

 libxio.so
Libxio posix interface

LoRS Client

eXNode

 libxio.so plugin for ROOT I/O

 libxio.so
Libxio posix interface

LoRS Client

ROOT I/O
XRootD LoRS plugins

eXNode

 libxio.so plugin for ROOT

 libxio.so
Libxio posix interface

LoRS Client

ROOT I/O
XRootD LoRS plugins

Interactive
ROOT CMSSW

eXNode

 cms apps already
support ROOT I/O

CMSSW, XRootD, IBP

1. Upload your data file to IBP using LoRS
– lors-upload [myfile.root] [lors flags] [depotlist]
– exNode file created locally

2. Register your file with XRootD-IBP server
– XRootD with LoRS/libxio plugin enabled
– Currently copy exNode file to XRootD exnode directory

3. Stream your file from IBP directly into your
ROOT I/O-application memory:

– Interactive root session, or
– CMSSW run
– change file URI to “root://my_XRootD_host/filename.xnd”

4. Write out files locally
– Stage them where ever you want afterwards

What is L-Store?
• Provides a file system interface to globally distributed storage

devices (“depots”).
• Parallelism for high performance and reliability.
• Uses IBP (from UTenn) for data transfer & storage service.

– Write: break file into blocks, upload blocks simultaneously to multiple
depots (reverse for reads)

– Generic, high performance, wide area capable, storage virtualization
service

• L-Store utilizes a chord based DHT implementation to provide
metadata scalability and reliability
– Multiple metadata servers increase performance and fault tolerance
– Real time addition/deletion of metadata server nodes allowed

• L-Store supports Weaver Erasure Encoding of stored files
(similar to RAID) for reliability and fault tolerance.
– Can recover files even if multiple depots fail.

Architecture
Goal: provide a distributed name space and storage

•A directory (Directory Ring) is comprised of files (File Ring)
•Each file is comprised of several slices(slice ring)
•Each slice is stored on Media in a Jukebox and accessed via a Mover

•All directories and files have permissions (LACS) and extended attributes
– Depot list, slice size, erasure coding, …

•Each file can have multiple representations.
– Each representation is associated with a service
– A serviceservice is added by providing pluggable modules for the

• Client, X-files, and JukeBox(transfer method)

Client

LACS

Jukebox
ManagerSlice

Directory File

X-Files

Jukebox

Mover

Media

Media
Changer

Jukebox

Mover

Media

Media
Changer

REDDnet
Research and Education Data Depot Network

•NSF funded project
•8 initial sites
•Multiple disciplines

– Sat imagery
(AmericaView)

– HEP
– Terascale

Supernova Initative
– Structuraly Biology
– Bioinformatics

•Storage
– 500TB disk
– 200TB tape

Future steps

• ROOT LoRS plugin -- bypass XRootD
• Host popular datasets on REDDnet
• Integrate L-Store functionality

Extra Slides

What is L-Store?

• L-Store provides a distributed and scalable namespace for storing
arbitrary sized data objects.

• Agnostic to the data transfer and storage mechanism. Currently only
IBP is supported.

• Conceptually it is similar to a Database.
• Base functionality provides a file system interface to the data.
• Scalable in both Metadata and storage.
• Highly fault-tolerant. No single point of failure including a depot.
• Dynamic load balancing of both data and metadata

L-Store Performance

3 GB/s

30 Mins

• Multiple simultaneous writes to 24 depots.
• Each depot is a 3 TB disk server in a 1U case.
• 30 clients on separate systems uploading files.
• Rate has scaled linearly as depots added.
• Planned REDDnet deployment of 167 Depots will be

able to sustain 25 GB/s.

“Data explosion”

•Focus on increasing bandwidth and raw storage
•Assume metadata growth is minimal

– Works great for large files

•For collections of small files the metadata becomes
the bottleneck
•Need ability to scale metadata

•ACCRE examples
– Proteomics: 89,000,000 files totaling 300G
– Genetics: 12,000,000 files totaling 50G in a single

directory

Metadata Raw storage

Probability of data loss with 1% disk failure
(http://elib.cs.berkeley.edu/storage/psi/docs/Petabyte-20040710.ppt)

QoS Requirements

• Availability - Should survive a partial network outage
• Data and Metadata Integrity

– End-to-end conditioning is a must!
• Performance

– Metadata(transactions/s)
– Data(MB/s)

• Security
• Fault Tolerace

– Metadata - mirroring
– Data - multiple complete device failures

WEAVER erasure codes

– Tables supporting up to 10 failures
• Satisfies data fault tolerance requirements

– Vertical erasure code (parity and data stored on same
resource)

– Encoding and Reconstruction times are O(t) where t = fault
tolerance

• Encoding and reconstruction done directly on the depot.
– No decoding time since vertical code

J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant Erasure Codes for Storage Systems,”
FAST-2005: 4th Usenix Conference on File and Storage Technologies, December, 2005,

http://www.usenix.org/events/fast05.

Simple L-Store architecture based
on a single metadata server

Chord Ring
Distributed Hash Table

– Key (K##) -hash(name)
– Nodes (N##) are distributed

around the ring and are
responsible for the keys
“behind” them.

N1

N8

N14

N21

N32

N38

N42

N56

K10

K24

K30

K54

Valid key range for
 N32 is 22-32

